
ScalaPy: Seamless Python Interoperability for
Cross-Platform Scala Programs

Shadaj Laddad
University of California, Berkeley

USA
shadaj@berkeley.edu

Koushik Sen
University of California, Berkeley

USA
ksen@cs.berkeley.edu

Abstract
In recent years, Python has become the language of choice for
data scientists with its many high-quality scientific libraries
and Scala has become the go-to language for big data systems.
In this paper, we bridge these languages with ScalaPy, a
system for interoperability between Scala and Python. With
ScalaPy, developers can use Python libraries in Scala by
treating Python values as Scala objects and exposing Scala
values to Python. ScalaPy supports both Scala on the JVM
and Scala Native, enabling its usage from data experiments in
interactive notebook environments to performance-critical
production systems. In this paper, we explore the challenges
involved with mixing the semantics and implementations of
these two disparate languages.

CCS Concepts: • Software and its engineering → Lan-
guage features.

Keywords: language interoperability, Scala, Python
ACM Reference Format:
Shadaj Laddad and Koushik Sen. 2020. ScalaPy: Seamless Python
Interoperability for Cross-Platform Scala Programs. In Proceedings
of the 11th ACM SIGPLAN International Scala Symposium (SCALA
’20), November 13, 2020, Virtual, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3426426.3428485

1 Introduction
Today, Python is the dominant language for data science with
a plethora of machine learning and scientific computing li-
braries. Scala, on the other hand is the dominant language
for big data processing and is widely used across the in-
dustry in production systems through platforms like Spark.
With machine learning and big data analytics becoming crit-
ical components of modern products, developers often find
themselves switching frequently between the two. After data
scientists experiment with data models in Python, software
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SCALA ’20, November 13, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8177-2/20/11.
https://doi.org/10.1145/3426426.3428485

developers must rewrite these models in Scala for produc-
tion use. What if we could bridge the gap with a common
language for both research and production?

ScalaPy is an open-source project (https://scalapy.dev) that
brings the worlds of Python and Scala with a seamless in-
teroperability layer that works on both the JVM and Scala
Native [16]. By embedding a Python interpreter inside the
Scala application, ScalaPy makes it easy for developers to
bring Python libraries into existing production code with-
out having to change their deployment systems. In addition,
by offering the same end-user API regardless of target plat-
form, ScalaPy is able to fit into all types of workflows from
initial explorations inside Jupyter notebooks to production
execution with low interoperability overhead in native code.

1.1 Motivating Example
Consider an application where we want to extract text from
handwritten documents that users upload to our website
(adapted from the TensorFlow beginner tutorial [6]).

Users start by uploading samples of their handwriting
that our application will use to train a neural network. The
resulting model will then evaluate new images to extract
text data. TensorFlow is great for this application, but our
server is written in Scala. While libraries exist that bind to
TensorFlow’s C API [13], they do not cover all the features
available since a large portion of TensorFlow is implemented
in Python. ScalaPy solves this problem in a practical way by
making the Python interface accessible in Scala.

Figures 1, 2, and 3 show ScalaPy code that uses TensorFlow
for this application.

1 // image, label tuples
2 val userSamples: Seq[(Seq[Int], Int)] = ...
3

4 val tf = py.module("tensorflow")
5 val trainData = userSamples
6 .map(_._1.toPythonProxy).toPythonProxy
7 val trainLabels = userSamples
8 .map(_._2).toPythonProxy

Figure 1. Loading TensorFlow and user data in ScalaPy

https://doi.org/10.1145/3426426.3428485
https://doi.org/10.1145/3426426.3428485
https://scalapy.dev

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

We start by importing TensorFlow (line 4). Then, we load
user data into Python by converting our Scala collections
into Python sequences (lines 5-8). With our training data
loaded, we are ready to train a machine learning model. In
Figure 2, we define our model architecture by composing
four layers using the TensorFlow Keras API (lines 1-10). We
define a loss function for our categorical data (lines 12-15),
configure our optimization strategy (lines 17-21), and train
on the data (line 23).

1 val model = tf.keras.models.Sequential(Seq(
2 tf.keras.layers.Flatten(
3 input_shape = (28, 28)
4),
5 tf.keras.layers.Dense(128, "relu"),
6 tf.keras.layers.Dropout(0.2),
7 tf.keras.layers.Dense(10)
8).toPythonProxy)
9

10 val lossFn = tf.keras.losses.
11 SparseCategoricalCrossentropy(
12 from_logits = true
13)
14

15 model.compile(
16 optimizer = "adam", loss = lossFn,
17 metrics = Seq("accuracy").toPythonProxy
18)
19

20 model.fit(trainData, trainLabels, epochs = 5)

Figure 2. Creating a neural network in TensorFlow and
training on user data

Finally, when a user submits new images for classification,
we make predictions using our trained model. We do this
by passing our input through the neural network (line 2),
extracting probabilities and converting to a Scala collection
(lines 3-4), and returning the index of the class with the
highest probability (line 6).

1 def predict(input: Seq[Int]) = {
2 val pred = model(input.toPythonProxy).numpy
3 val probs = tf.nn.softmax(pred).numpy
4 .as[Seq[Double]]
5

6 probs.zipWithIndex.maxBy(_._1)._2
7 }

Figure 3.Making predictions on new user inputs with our
model

Ignoring the toPythonProxy calls, using the TensorFlow
Python API through ScalaPy feels no different than using a
regular Scala library. With ScalaPy, Scala inherits a world of
high-quality libraries from the Python ecosystem naturally.

1.2 Contributions
• We demonstrate how the Python interpreter can be embed-
ded in Scala with simultaneous support for both the JVM
and native platforms through Scala Native and explore the
challenges of this embedding such as heap synchronization
and thread safety (Section 2).

• We explain how primitives and complex constructs such
as lambdas from Scala and Python can be converted to
each other without requiring user intervention (Section 3).

• We describe a system of macro transformations that allow
users to interact with Python APIs through type-safe defi-
nitions while still maintaining portability across the JVM
and Scala Native (Section 4).

• We present multiple strategies for converting and sharing
large collections of data between Scala and Python that
allow users to tune the interoperability overhead for the
intended usage (Section 5).

2 Embedding Python in Scala
ScalaPy binds to native APIs of the official CPython inter-
preter while exposing a high-level API for end users. Com-
pared to interoperability projects such as Scala.js [2] that
compile Scala to the target language, ScalaPy takes the ap-
proach of embedding an interpreter of the target language.
This makes it easier for developers to bring Python into ex-
isting programs, but introduces a challenge since ScalaPy
needs to support both the JVM and native platforms without
introducing code duplication and risking differing behavior.
Using an embedded interpreter in a JVM-like host intro-

duces challenges not seen in other interoperability work,
such as the Lua-ML project [15] where the host’s garbage col-
lector can be repurposed for the embedded language. Embed-
ding Python’s runtime in Scala results in two independent
heapswhose garbage collectorsmust stay synchronized since
Scala code can reference Python values and vice-versa. On
top of this, Python has a fundamentally different approach
to threading compared to Scala, with a global interpreter
lock which must be held when performing any operation.
ScalaPy tackles these challenges to ensure that developers
can be productive without worrying about interoperability
details.

2.1 Cross-Platform Interpreter Bindings
Before we can offer a high-level API for our users, we need
a low-level system to interact with the interpreter through
Scala code. CPython, the standard implementation of Python,
exposes all the features of the core language through a C API
[14]. These APIs allow us to call Python functions, convert

ScalaPy: Seamless Python Interoperability for Cross-Platform Scala Programs SCALA ’20, November 13, 2020, Virtual, USA

primitive C values into their Python equivalents, and adjust
reference counts for heap synchronization.

ScalaPy supports both the JVM and Scala Native, but these
platforms expose different APIs for calling into native code.
If we were to rewrite our interpreter interface for each plat-
form, we risk code duplication that can lead to diverging
behavior. In ScalaPy, the majority of logic for interfacing
with the CPython interpreter lies in shared code that is cross-
compiled for the JVM and Scala Native, with just a thin
binding abstraction that provides a common API over the
equivalent C-level constructs in each platform.

In Scala Native, ScalaPy uses the built-in support for bind-
ing to C APIs through annotated Scala functions. Since Scala
Native compiles directly to native code, we can access C-level
constructs such as structs and pointers just like regular Scala
objects. Holding a reference to Python values is as simple as
storing a pointer to the value in a wrapping Scala object and
maintaining reference counts appropriately. In our bindings
for Scala Native in Figure 4, we also use zones to perform
heap allocation, with an implicit Zone value introduced by
the WithZone higher order function.

1 import scala.scalanative.native._
2 object Platform {
3 type Pointer = Ptr[Byte]
4 type PointerToPointer = Ptr[Ptr[Byte]]
5

6 def WithZone[T](f: Zone => T): T = Zone(fn)
7

8 def allocPtrToPtr(implicit zone: Zone) = {
9 alloc[Ptr[Byte]]
10 }
11 ...
12 }

Figure 4. Our binding abstraction for Scala Native

On the JVM, ScalaPy uses Java Native Access (JNA) [20]
to bind to the Python interpreter. While the Java Native In-
terface (JNI) [8] offers higher performance by having the
developer write custom bindings in C, JNA lets us access
native constructs such as pointers directly from our Scala
code which offers us a significant advantage since this mir-
rors the interface we have on the Scala Native side. Thus,
ScalaPy on the JVM is built on bindings written with JNA,
which we see in Figure 5. The performance loss due to JNA
is less significant since most data science operations do not
cross the interoperability bridge frequently. In any case, we
recommend using Scala Native for applications requiring
high-performance interoperability.
In our JVM bindings, we use the same Pointer type for

all native pointers (lines 3-4) since JNA does not use generics
to type the elements referenced by the pointer. For heap

allocation, we use the Memory type (lines 6-8), which does
not require an implicit zone. To maintain compatibility with
the zone-based Scala Native API, we define WithZone to call
the wrapped function with a dummy Unit value.

1 import com.sun.jna._
2 object Platform {
3 type Pointer = Pointer
4 type PointerToPointer = Pointer
5

6 def WithZone[T](f: Unit => T): T = fn(())
7

8 def allocPtrToPtr = {
9 new Memory(Native.POINTER_SIZE)
10 }
11 ...
12 }

Figure 5. Our binding abstraction for the JVM

Now, instead of directly using JNA/Scala Native APIs in
the interpreter interface, we only use the APIs and type
aliases exposed by the common Platform interface which
results in identical behavior on both platforms.

2.2 Scala-Python Heap Synchronization
Both Scala and Python have their own systems for mem-
ory management. Scala uses the JVM/Scala Native’s imple-
mentation of garbage collection and Python uses reference
counting with cycle collection. When Scala code holds refer-
ences to Python values, we need to ensure that these values
have the appropriate reference counts so that the Python
runtime does not prematurely collect them. We manage this
through an intermediate Scala object, of type PyValue, that
represents a Scala reference to a Python value.
Whenever we load a Python value out of the interpreter,

we wrap the native pointer we receive in a PyValue object.
Treating each PyValue instance as a single reference to the
underlying Python value gives us a lightweight way to en-
sure garbage collection correctness. With this system, the
only time that there will be no references to a Python value
from Scala will be when all PyValues for it have been garbage
collected.

With the CPython APIs for managing reference counts, we
increment the reference count for the underlying value when
we construct a PyValue and decrement the count when the
host garbage collector finalizes it. With this strategy, there
will never be extra references to a deleted Python value
since any live PyValue objects correspond to an incremented
reference count of the underlying object. In the following
figure, we see how the intermediate PyValue objects keep
Python values alive while they are referenced by user code.

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

Figure 6. Diagram of references between Scala (red) and Python (yellow) in a simple ScalaPy program

As we see in Figure 6, there can also be references back
from Python to Scala when lambdas are involved, which is
much more complicated since Python does not have access
to the host garbage collector. We will discuss how we handle
heap synchronization in this reverse direction in Section 3.5.

2.3 Thread Safety and the Global Interpreter Lock
Unlike Scala, where threads are commonplace, Python does
not support multithreading due to the Global Interpreter
Lock (GIL) [4]. This lock must be held when performing
any operations in the Python interpreter, which we must
be especially aware of in the multithreaded world of Scala.
Throughout our low-level Python interface, all calls to the
native CPythonAPI arewrapped in calls to withGil, a higher
order function that lets us hold the GIL without duplicated
code. As shown in Figure 7, this function acquires the GIL if
necessary, calls the inner block, and releases the GIL.

1 def withGil[T](fn: => T): T = {
2 val handle = PyGILState_Ensure()
3 try { fn } finally {
4 PyGILState_Release(handle)
5 }
6 }
7

8 withGil { Py_IncRef(pyValue.underlying) }

Figure 7. Source of the withGil helper and a usage example

Unfortunately, the presence of the GIL means that Scala
code interacting with Python from different threads will
suffer from a performance penalty due to many threads try-
ing to acquire a single lock. While subinterpreters [17] can
avoid the GIL by creating instances of Python tied to specific
threads, introducing these can cause inconsistent behavior
when values are shared between threads which takes away
from the referential transparency of using Python values
like regular Scala objects. We recommend ScalaPy users to
bring all Python interactions into a single thread with other
threads used for processing data in Scala values. This can be
achieved by using concurrency abstractions such as actors
where many separate threads can communicate with each
other while still processing events one-by-one locally.

3 High-Level Python Interface
We now introduce the high-level ScalaPy API, which exposes
Python values as regular Scala objects with conversions be-
tween the equivalent data types in both languages.

3.1 Python API Entrypoints
Users have two main entrypoints to Python APIs: global
scope andmodules. ScalaPy exposes both of these as top-level
APIs in the py package object: py.global and py.module.

Both global and module scopes are implemented using
Scala’s Dynamic type [3], which allows users to access at-
tributes and functions in the scope with the same syntax as
accessing members of Scala objects. For example, the Python
code

ScalaPy: Seamless Python Interoperability for Cross-Platform Scala Programs SCALA ’20, November 13, 2020, Virtual, USA

myList = list()
print(myList) // []

can be equivalently written with ScalaPy as:
val myList = py.global.list()
println(myList) // []

Following the semantics of Scala’s Dynamic type, the Scala
compiler transforms any attribute access or method call un-
der py.global or py.module to a call to selectDynamic or
applyDynamic, respectively. These calls are invoked with
the original element being accessed as a string (e.g. "list" in
the above example), which allows us to load the function by
its name and call it with PyObject_Call. To use modules,
users can call py.module with the module name and use the
returned object just like global scope. For example, we can
call APIs from the NumPy library using the module API:
val np = py.module("numpy")
println(np.ones(3)) // array([1., 1., 1.])

3.2 Type Hierarchy and Correspondence
In ScalaPy, users interact with Python APIs through a hier-
archy of types that correspond to core Python data types.
This is modeled after Scala.js [1], where users interact with
built-in JavaScript types through Scala facades. At the top of
the ScalaPy hierarchy lies py.Any, shown in Figure 8, which
is the base type for all Python values. Subtypes of py.Any
include primitives such as py.Number, py.Sequence, and
py.Object.

All the Python types in ScalaPy are traits so that users can
extend them when working with other modules. Since these
high-level wrappers must be able to access the underlying
PyValue pointer, py.Any tracks this underlying value with
the abstract member underlying.

1 trait Any {
2 def underlying: PyValue
3 override def toString: String =
4 underlying.getStringified
5 final def as[T: Reader]: T =
6 implicitly[Reader[T]].read(underlying)
7 }

Figure 8. Definition of the py.Any type

With this set of core ScalaPy types, users can safely in-
teract with Python APIs by converting Python values to
instances of the corresponding Scala types through Reader
instances, which we discuss next.

3.3 Python to Scala Conversions
ScalaPy supports conversion to Scala types with the .as[T]
method through the Reader[T] typeclass. Readers convert
raw PyValue pointers into the target type T. For conversions

into subtypes of py.Any, ScalaPy automatically synthesizes
Readers with an implicit macro [11]. For example, Figure
9 shows the Reader for py.Sequence, which constructs an
instance with the given PyValue.

1 myPythonValue.as[py.Sequence](
2 // automatically synthesized
3 new Reader[py.Sequence] {
4 def read(u: PyValue) = new py.Sequence {
5 val underlying = u
6 }
7 }
8)

Figure 9. A synthesized reader for the py.Sequence type

For Python primitives that directly correspond to Scala
types such as Int/Float/String, we also support direct con-
versions that bypass the Python type hierarchy from the
previous section. These conversions use native APIs exposed
by the interpreter to convert the Python value into the ap-
propriate C type. We then can directly return this C value
since both JNA and Scala Native use Java’s primitive types
to represent C primitives. For example, the Python code
myList = [1, 2, 3]
print(len(myList))

can be written with ScalaPy as
val myList = py.global.list(1, 2, 3)
println(py.global.len(myList).as[Int])

Beyond these primitives, ScalaPy also includes one addi-
tional special type for developers to create accurate type
definitions for their libraries: the union type. While union
types will be supported in Scala 3 [10], they are not yet
available in the Scala 2.x series. So, we must provide special
support for this type in a manner similar to Scala.js. When a
union type is taken as a parameter, users can supply argu-
ments of either type, with implicit conversions available that
wrap the value into the union type. For example, in Figure
10 we define a method taking either a tuple or sequence and
call it with either input.

1 val myTuple: py.Tuple = ...
2 val mySequence: py.Sequence = ...
3 def myFunc(in: py.|[py.Tuple, py.Sequence]) =
4 py.global.len(in)
5

6 myFunc(myTuple) // compiles!
7 myFunc(myList) // compiles!
8 myFunc(123) // does not compile

Figure 10. An example of using union types in ScalaPy

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

Figure 11. Diagram of the tracker object system for converting Scala functions to Python lambdas

3.4 Scala to Python Conversions
ScalaPy also supports conversions from Scala to Python val-
ues. With our embedding approach, Scala primitives must
be converted, not just casted, into Python primitives. This
is a critical difference between ScalaPy and other interop-
erability projects such as Scala.js and Scala Native which
compile Scala code to the target language and therefore can
encode Scala values using the target’s primitives. We define
the mapping between Scala and Python primitives in Figure
12.

Scala Type Corresponding CPython Type
Boolean PyBool
Byte / Short / Int PyInt
Long PyLong
Float / Double PyFloat
String PyString
Unit Py_None (singleton)

Figure 12. Mapping from core Scala types to their CPython
equivalents

In order to have Python API calls look just like regular
Scala calls, these primitive conversions are defined as implicit
conversions from the primitive type to subtypes of py.Any.
In user code, these conversions will be automatically invoked
when a Scala-to-Python conversion is necessary to satisfy

type requirements. These automatic conversions can be per-
formed safely from Scala types to Python types. Conversions
in the reverse direction must done explicitly by the user as
described in Section 3.3 because the types of Python values
are only known at runtime so we cannot guarantee safety at
compile-time.

With just these conversions, we can support simple Python
API calls that look just like regular Scala calls. For exam-
ple, we can construct a Python list of integers and have the
individual Scala integers converted implicitly into Python
numbers:

val myList = py.global.list(1, 2, 3)
println(myList)
// [1, 2, 3]

3.5 Function Conversions
In many Python libraries, developers can pass in callbacks to
listen to logging events or provide custom transformations.
So, with ScalaPy, we need to be able to support such libraries
by allowing developers to pass in Scala functions where
Python lambdas are expected.

For most of our primitive type conversions, there is a sim-
ple CPython API for converting the C equivalent to Python
by copying the data involved. For functions, however, when
passing function pointers into Python we lose all closure

ScalaPy: Seamless Python Interoperability for Cross-Platform Scala Programs SCALA ’20, November 13, 2020, Virtual, USA

state associated with the function which makes a direct con-
version impossible. What we need is a way to associate in-
stances of generated Python lambdas with the original Scala
function they are wrapping. We discuss how ScalaPy gener-
ates these associations in the following section.

3.5.1 Tracker Objects. Holding references to Scala val-
ues from Python is implemented with "tracker objects". A
key challenge of holding such references is handling garbage
collection, since the JVM/Scala Native host cannot see any
references originating in the Python interpreter. Tracker ob-
jects let us keep both garbage collectors in sync by notifying
the host of any garbage collection activity in Python that
affects references to Scala values. Thus, we can safely al-
low Python to reference Scala values without introducing
memory leaks or dangling references.
As shown in Figure 11, tracker objects and Scala values

have a one-to-one mapping. This bijection (mapping in the
figure) is implemented with two hash maps – one from the
Scala object to the tracker object referencing it and one in
the reverse direction. When the Python runtime collects
the tracker object and executes its finalizer, ScalaPy can
safely release the reference to the Scala value since there
can only be one Python object associated with it at a time.
When handling function calls, tracker objects enable us to
use the same base implementation for different lambdas by
storing a tracker for the Scala function in the self property
of the Python lambda. Then, when handling a call in our
base lambda handler, we unwrap the associated tracker into
the original function and execute it.
To create tracker objects, we define a Python class using

Python’s dynamic types API [18]. Then, when a user exe-
cutes a conversion that requires a tracker, ScalaPy creates
an instance of the tracker class and updates the mapping.
Immediately after creating the tracker, ScalaPy associates a
finalizer [12] with it that will remove the tracker and its asso-
ciated value from our maps when it is run. With this system,
as long as the tracker object is being referenced in Python,
the Scala value it tracks will stay alive in our maps, but as
soon as Python cleans out the tracker, the Scala value is re-
moved from our maps so can be freed if no Scala references
exist.

3.5.2 GeneratingPythonLambdas. With tracker objects,
converting Scala functions to Python lambdas becomes eas-
ier since we can reference Scala closures through trackers,
but we still need to handle details such as argument packing.
On initialization, we create a generic function pointer which
will be invoked when handling calls to all converted lamb-
das. We use Python’s support for associating lambdas with
a self object to associate individual lambda instances with
trackers for the underlying Scala functions. When handling
a lambda call, we unwrap the tracker into the referenced
Scala function, invoke this function normally, and return

the resulting PyValue. This process is summarized in the
following snippet.

1 (self: PyValue, args: PyValue) => {
2 val fn = unwrapTracker(self)
3 .asInstanceOf[PyValue => PyValue]
4 fn(args).underlying
5 }

Figure 13. Handler for proxied calls to Scala functions

When wrapping a specific function, we do not directly
generate a tracker for the function to be converted. Instead,
ScalaPy generates an intermediate function to be tracked
which takes only a single PyValue. This is necessary since
when lambdas are called with multiple arguments, the argu-
ments are packed together into a tuple that wemustmanually
unpack before calling the Scala function. For example, we
generate the following intermediate function when convert-
ing a function taking two parameters.

1 def fn2(f: (PyValue, PyValue) => PyValue) = {
2 val handler = (args: PyValue) => f(
3 PyTuple_GetItem(args, 0),
4 PyTuple_GetItem(args, 1)
5)
6 ...
7 }

Figure 14. Intermediate function to convert a Function2

Using the mechanisms described above, ScalaPy is able
to support conversions of any Scala function into a Python
lambda. This makes interactions with data processing li-
braries even more natural since Scala developers can add
callbacks to listen to events just like they would with Scala
libraries.

4 Dynamic and Static Typed Python
Interfaces

Once a user has loaded a Python value into Scala code, they
have two main options for interacting with the object: dy-
namically through the py.Dynamic type or statically by cre-
ating Scala types that describe the attributes and methods
available on the value. While the dynamic interface makes
it easy to get started with a new library without any ex-
tra effort, the option to introduce static types enables Scala
code to interact with Python values with confidence that
there will not be runtime errors due to missing methods or
mismatched argument types.

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

4.1 Dynamic Interface with py.Dynamic

Dynamic calls in ScalaPy are handled with the py.Dynamic
type, a subtype of py.Any which indicates that the user has
explicitly opted into the dynamic interface. The py.Dynamic
type supports attribute loads and stores, method calls, and
even some concepts with no syntax equivalents in Scala such
as indexing into arrays and dictionaries.
Dynamic calls in ScalaPy directly return py.Dynamic in-

stead of just py.Any, which enables chained dynamic calls.
Similarly, both global and module calls through py.global
and py.module return py.Dynamic values. On the user side,
this results in a natural interface when getting started with
ScalaPy since they can use familiar APIs without any extra
steps to involve static type definitions. For example, a user
can create a list, append elements, and get the sum of them
all with code that looks like it could have been for a regular
Scala library.

1 val myList = py.global.list(1, 2, 3)
2 // myList: py.Dynamic
3

4 myList.append(4)
5 myList.append(5)
6 println(py.global.sum(myList)) // 15

Figure 15. An example of dynamic calls on Python objects
in ScalaPy

Some syntax features in Python do not have equivalents
in Scala, such as the use of square brackets for array and
dictionary access. To perform this indexing operation on a
Python value in ScalaPy, users can call the .arrayAccess
method. For example, the Python code
print(myList[0]) // 1

can be converted to Scala as
println(myList.arrayAccess(0)) // 1

In some situations, users may have difficulty translating
Python code into Scala. ScalaPy allows developers to write
snippets of Python code in Scala that mix in Scala values
using the py"" string interpolator. For example, we can per-
form the sum operation in Figure 15 with a Python snippet:
println(py"sum($myList)") // 15
// expanded to
println(StringContext("sum(", ")").py(myList))

Under the hood, this generates a new scope containing
all the values being interpolated under generated variable
names and then executes the snippet with the interpolated
sections replaced with references to the generated variables.
Since each generated variable is only used once within the
temporary scope, it can only be used to load values since
setting the variable to a new value will have no effect on the

program execution. With this option, developers can quickly
integrate Python code examples they find and translate com-
ponents into strongly typed code over time with the APIs
we describe in the next section.

4.2 Static Interfaces with @py.native

While dynamic interfaces are excellent for experimentation
with new APIs, using them in production code can be dan-
gerous since doing so loses the benefit of Scala’s strong type
system. In addition, dynamic interfaces do not play well
with IDE features such as code completion since there is
little knowledge these tools can gather from py.Dynamic. To
enable developers to use Python while maintaining strong
type safety, ScalaPy includes a type definition system that
can wrap Python values in statically typed interfaces.
Python value types are defined as regular traits with a

few annotations that let ScalaPy generate the appropriate
runtime support code. All type definition traits must be an-
notated with @py.native, which enables macro transforma-
tions that replace the bodies of the trait’s members with the
appropriate API forwarders. Every method definition in the
trait must have a py.native body, which acts as a place-
holder that will be replaced by a forwarder. For example, in
Figure 16, we create a type definition for the random.Random
type.

1 @py.native trait Random extends py.Object {
2 def uniform(a: Double, b: Double): Double =
3 py.native
4 }
5

6 val r = py.module("random").as[Random]
7

8 println(r.uniform(0, 1)) // 0.25347253974

Figure 16. Creating a static type definition for Random

The overall definition style is designed to mirror Scala.js,
which is already proven to be a success in the real-world.
Scala.js specially handles type definitions when emitting
JavaScript, so it does not require any macros to be involved.
ScalaPy, however, depends on the Scala compiler’s existing
backends for emitting Java byte code and Scala Native IR.
This means that we can only perform transformations until
the typechecking phase, which leaves us with macros as the
only choice.

The py.nativemacro is expanded in trait members with a
dynamic call to a method with the same name as the member.
The result of the call is converted to the expected result type
with the .as method.

ScalaPy: Seamless Python Interoperability for Cross-Platform Scala Programs SCALA ’20, November 13, 2020, Virtual, USA

1 def uniform(a: Double, b: Double): Double =
2 as[py.Dynamic].uniform(a, b).as[Double]

Figure 17. Expanded implementation of Random.uniform
after typechecking

Then, when calling the .as method to wrap an existing
Python value in a static facade, the generated reader con-
structs the trait with the abstract underlying value filled in
with the value being wrapped.

1 val r = py.module("random").as[Random](
2 new Reader[Random] {
3 def read(v: PyValue) = new Random {
4 val underlying = v
5 }
6 }
7)
8 println(r.uniform(0, 1)) // 0.25347253974

Figure 18.Generated instance of the Reader typeclass when
casting into the type definition

With these transformations, developers can write Scala
code that interacts with Python APIs while being confident
that type errors will be caught at compile-time.

5 Scala-Python Data Sharing
While the Python C API works well for conversions be-
tween primitive types, converting larger data structures such
as sequences requires a significant amount of logic since
these have completely different representations in Scala and
Python. In addition, for such data structures, conversions
affect not only the top level value, but also nested values
which must all be converted to their equivalents in the target
language. In this section, we focus on sequence conversions,
but ScalaPy supports additional built-in data structures such
as dictionaries and tuples as well.

5.1 Loading Python Sequences in Scala
When loading sequences from Python, we emit a Scala
sequence wrapper that forwards all operations to the un-
derlying Python value. This conversion is introduced as
a Reader[Seq[T]] which can be synthesized as long as a
Reader[T] is available for converting individual elements.
Emitting only a proxy instead of a full copy of the data
matches the intended semantics of the .as method, where
we want our converted value to always match the underlying
Python value even if other code modifies it. For example, we
can observe changes to an underlying collection

1 val myPythonList = py.global.list(1, 2, 3)
2 val asScalaList = myPythonList.as[Seq[Int]]
3

4 println(asScalaList) // Seq(1, 2, 3)
5

6 myPythonList.append(4)
7 println(asScalaList) // Seq(1, 2, 3, 4)

Figure 19. Using proxies that reflect underlying changes

In some data-heavy applications, developers may write
code that frequently reads data from loaded collections but
does not need to observe underlying changes after the con-
version. Proxy collections can introduce a significant perfor-
mance penalty since conversions of individual elements will
be executed on every access. This penalty is significantly
reduced in Scala Native, where calls into native functions
have effectively zero overhead, but can have a major slow-
down on data-heavy code running on the JVM. In this case,
users can easily convert their proxy into a realized Scala
collection through one of the built-in collection operations
such as toVector.

5.2 Sending Scala Sequences to Python
In the reverse direction, when sending Scala collections to
Python, ScalaPy offers both proxy and copy conversion op-
tions as separate APIs. Unlikewhen pulling data fromPython,
pushing data as a copy is significantly faster since having
Python grab a copy of each element of a proxy involves func-
tion pointer calls into the host language which can incur
a serious performance penalty. For this reason, developers
must decide in their Scala code whether to send data to
Python as a proxy or a copy.

With our conversion from Scala functions to Python lamb-
das described in Section 3.5, generating Python proxies over
Scala collections becomes relatively easy since we can imple-
ment this conversion in terms of the high-level APIs. Users
can request conversion with .toPythonProxy, which takes
in a T => py.Any implicit parameter for converting ele-
ments. We generate lambdas to get elements at a given index
and for the length of the sequence. Then, we construct a
sequence proxy that will invoke these lambdas when Python
code reads elements. We can see the semantics of proxies in
action in lines 10-14 of Figure 20.
For copying, we have .toPythonCopy which takes the

same implicit parameter but now uses low-level APIs from
the interpreter interface to insert elements one-by-one into
a newly created Python list. As a result of using the low-
level interface, we have to do a bit of extra work to pass
off ownership of the new elements to the list. In lines 16-20
of Figure 20, we see that all elements of the sequence are
extracted during the toPythonCopy call instead of lazily at
the final println.

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

1 val mySeq = new Seq[Int] {
2 def apply(index: Int) = {
3 println(s"requested $index")
4 index + 1
5 }
6 def length = 2
7 def iterator = ...
8 }
9

10 val pythonProxy = mySeq.toPythonProxy
11 println(pythonProxy)
12 // requested index 0
13 // requested index 1
14 // [1, 2]
15

16 val pythonCopy = mySeq.toPythonCopy
17 // requested index 0
18 // requested index 1
19 println(pythonCopy)
20 // [1, 2]

Figure 20. Passing a sequence into Python through proxies
and copies

With both these options, developers can make the appro-
priate decisions throughout their code base to send data as
proxies that have no memory overhead but are slower to get
individual elements or as copies which increase memory use
but are fast in data-heavy applications. A major advantage
of Scala Native as the target platform here is that using a
proxy is a competitive option even in data-heavy code since
compilation to native code eliminates the overhead of cross-
ing between Scala and native functions so the overhead of
proxies is much lower.

6 Evaluation
Our primary claim in this paper is that with ScalaPy, devel-
opers can use Python libraries with ease in Scala applica-
tions for various data science workflows. We demonstrate
this capability through benchmarks that test interoperability
performance and multiple projects developed both by the
authors and members of the open-source community.

6.1 Interoperability Benchmarks
ScalaPy enables developers to use Python libraries while
maintaining high performance. We implement two bench-
marks to evaluate the performance aspects most relevant to
data science workflows. The first measures the performance
of transferring collections between Scala and Python, which
occurs frequently when using Python libraries to analyze
Scala data. The second compares the performance of a com-
plete application written with ScalaPy against a pure Python
equivalent.

6.1.1 Data Transfer Benchmarks. We perform two data
transfer benchmarks: one for sending a collection to Python
and one for reading values back. We use both proxy and
copy strategies for collection conversion to demonstrate the
tradeoff between the two. We also benchmark on both the
JVM and Scala Native to demonstrate the differences in native
binding performance. We ran our benchmarks on OpenJDK
13 with a 2.9 GHz Intel i7-7820HQ and 16 Gb RAM.

In our first benchmark, we generate a Scala vector of
doubles and measure the time to convert it into a Python
sequence. We see the results of this benchmark in Figure 21.

100 100.7 101 101.7 102

104

105

Collection Size

Be
nc
hm

ar
k
Sc
or
e
(n
s/
op

) JVM Copy Native Copy
JVM Proxy Native Proxy

Figure 21. Scala to Python conversion benchmarks (lower
is better)

In our second benchmark, we focus on read performance.
We initialize a Python sequence by the same process as the
first benchmark. Then, we convert the sequence back to Scala
and measure the time to sum its elements. This captures both
the overhead of loading values from Python as well as of
proxy reads. As a baseline, we sum the original sequence
without any conversions. We see the results in Figure 22.

100 100.7 101 101.7 102

102

104

106

108

Collection Size

Be
nc
hm

ar
k
Sc
or
e
(n
s/
op

) JVM Proxy Native Proxy
JVM Copy Native Copy

JVM Baseline Native Baseline

Figure 22. Reading benchmark results (lower is better)

ScalaPy: Seamless Python Interoperability for Cross-Platform Scala Programs SCALA ’20, November 13, 2020, Virtual, USA

Across both of these benchmarks, we see a clear perfor-
mance advantage of using Scala Native to bind to the Python
APIs, with an almost 10x performance gain. They also demon-
strate the tradeoff between proxies and copies, since proxies
have a constant conversion overhead time compared to a
per-element overhead for copying the data. On the other
hand, proxies have a larger overhead compared to copies
when reading back values. For applications where converted
collections will be accessed at only a few indices, proxies
have an advantage since even large collections only have
constant overhead for conversion and individual reads. For
data science applications where all the collection data will
be used, copies offer performance gains since Python code
can read values with minimal overhead.

6.1.2 End-to-EndApplicationBenchmark. In addition
to low-level collection benchmarks, we compare the perfor-
mance of ScalaPy to hand-written Python for an end-to-end
data science application. In our benchmark, we define a Ten-
sorFlow graph for least-squares linear regression and per-
form 50 iterations of gradient-descent. In this benchmark,
ScalaPy on the JVM averaged 0.2868 sec/op, ScalaPy on Scala
Native averaged 0.2873 sec/op, and hand-written Python av-
eraged 0.2868 sec/op. These numbers are almost identical
with benchmark variability likely making up the difference.
This demonstrates how in data science applications, where
the majority of the time is spent in specialized native li-
braries for data operations, the interoperability overhead of
ScalaPy has almost no consequence on the final application
performance.

6.2 Production Applications
In addition to performance benchmarks, ScalaPy has been
proven through various projects that cover a wide range of
interoperability needs.

6.2.1 Machine Learning Research. ScalaPy was origi-
nally created to enable Scala developers to access Tensor-
Flow from their programs. To that end, we have developed
official bindings to TensorFlow 1 and NumPy 2 for ScalaPy
that have been used in various complex projects. One project
involved deep reinforcement learning to control a simulated
robot in an unknown terrain. ScalaPy made it possible to
simulate the environment with high performance in Scala
while sending reward updates to TensorFlow for learning.
In another project, we used ScalaPy to train a convolutional
neural network to mimic human responses to complex en-
vironments in real-time. Here, Scala was used to capture
streaming images and pre-process them with OpenCV and
ScalaPy was used to relay human actions to TensorFlow for
training. With ScalaPy’s concise static type definition API,
all the types required for these projects to safely interact

1https://github.com/shadaj/scalapy-tensorflow
2https://github.com/shadaj/scalapy-numpy

with NumPy and TensorFlow took fewer than 400 lines of
code.

6.2.2 Jupyter Notebook Compatibility. One of the rea-
sons why ScalaPy supports the JVM is to handle notebook en-
vironments, where snippets of code must be compiled and ex-
ecuted at runtime through the Scala interpreter, which only
works on the JVM. We have developed multiple notebook ex-
amples 3 that port existing tutorial notebooks developed for
TensorFlow to ScalaPy. With the ScalaPy dynamically-typed
interface, porting these notebooks was as simple as copy-
ing the original Python source and replacing incompatible
syntax the Scala equivalent and introducing the occasional
toPythonProxy call for a sequence conversion. These note-
books look almost identical to their Python equivalents with
no major changes in the layout of the code since ScalaPy
offers equivalent Scala APIs for all Python features.

6.2.3 Type-SafeTensorOperations. One project 4 build-
ing on top of ScalaPy developed by a Scala community mem-
ber offers a stress-test of our static typing system. This
project offers a type-safe interface to TensorFlow that goes
beyond just checking object types to also check the shape
of tensors involved. Built on top of Dotty, this system tracks
the dimensions of tensors through literal types and uses new
features of the typechecker to check tensor operations at
compile time. We see this in action in the following snippet
val tensor = tf.zeros(10 #: 20 #: 30 #: SNil)
// ...: Tensor[Float, 10 #: 20 #: 30 #: SNil]

tf.reduce_mean(tensor, axis = 0 :: SNil)
// ...: Tensor[Float, 20 #: 30 #: SNil]

tf.reduce_mean(tensor, axis = 1 :: 2 :: SNil)
// ...: Tensor[Float, 10 #: SNil]

With this setup, even dimension errors can be caught at
compile time, which shows how ScalaPy enables new ways
to tackle active research areas like tensor operation checking.

All these projects together exercisemany different features
of ScalaPy, such as function conversions to pass callbacks
into machine learning models, type definitions to interact
with these libraries while maintaining safety, and both prox-
ies and copies for sharing large datasets. The projects demon-
strate the ability of ScalaPy to handle these varied workflows
with a natural system for users to interact with Python APIs.

7 Related Work
Interoperability with Python is a popular area as many lan-
guages look to adopt the large ecosystem the language has
developed around scientific computing.
PythonKit [19], originally developed as part of the Swift

for TensorFlow project [5], enables developers to use Python
3https://gist.github.com/shadaj/29d77180aeefc41a749273026f7d1fd9
4https://github.com/MaximeKjaer/tf-dotty

https://github.com/shadaj/scalapy-tensorflow
https://github.com/shadaj/scalapy-numpy
https://gist.github.com/shadaj/29d77180aeefc41a749273026f7d1fd9
https://github.com/MaximeKjaer/tf-dotty

SCALA ’20, November 13, 2020, Virtual, USA Shadaj Laddad and Koushik Sen

APIs from Swift. This is most similar to ScalaPy in its goals
since Swift shares many features with Scala with a similar
focus on offering safety and performancewhile being concise.
However, this project only offers dynamically typed APIs
which limits its use case to prototype projects and research
where strong typing is not as important.

Jep [7] is a library for interoperability between Java and
Python that embeds Python through JNI. Since Scala can run
on the JVM, Scala programs can use Jep to access Python
libraries. However, Jep fails to preserve semantics when us-
ing Python values because it uses built-in Java structures to
wrap Python values rather than a separate type hierarchy.
When a suitable Java equivalent for a Python value does not
exist, Jep often falls back to unusable representations such as
a stringified version of the object. In addition, Jep cannot be
used in Scala Native since it is written in Java, which rules
out its use on resource-constrained platforms.
Polynote [9] is a notebook environment that focuses on

supporting multiple languages simultaneously with data con-
versions between the languages it supports, which include
Python and Scala. As a notebook environment, Polynote
cannot be used for production systems and performance is
not its primary concern. To that end, Polynote’s support
for conversions between Scala and Python is internally im-
plemented using Jep, so it inherits all the limitations we
previously discussed. In future work, it would be interesting
to explore replacing Jep with ScalaPy.

8 Conclusion
Python and Scala represent very different programming
paradigms. Python is a dynamically-typed language that
sacrifices performance in exchange for conciseness and ease
of use. Scala, on the other hand, is statically-typed and is
used in many large-scale, high-performance applications.
With ScalaPy, we have brought these two worlds together
with a seamless interoperability layer. With a cross-platform
interpreter embedding, we give developers the flexibility
to integrate Python into existing JVM applications or com-
pile directly to native code for maximum performance. With
heap-synchronization and thread safety, developers can treat
Python values as having the same semantics as regular Scala
objects. Through automatic conversions between Scala and
Python types, developers can mix Scala and Python values
naturally. Just like Python, developers can quickly get started
with new APIs through our dynamically-typed interfaces,
but can gradually adopt static types to ensure safety and
maintainability.

Acknowledgments
We would like to thank Maxime Kjaer, Bruno Fernandes,
Andrew Valencik, andMarkMelton, who made various open-
source contributions to ScalaPy that shaped its development.

References
[1] Sébastien Doeraene. 2013. Scala.js: Type-Directed Interoperability

with Dynamically Typed Languages. (2013), 10. http://infoscience.
epfl.ch/record/190834

[2] Sébastien Doeraene, Tobias Schlatter, and Nicolas Stucki. 2016.
Semantics-Driven Interoperability between Scala.js and JavaScript.
In Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala
(SCALA 2016). Association for Computing Machinery, New York, NY,
USA, 85–94. https://doi.org/10.1145/2998392.2998404

[3] EPFL and Lightbend. 2019. Scala Standard Library 2.13.1 -
scala.Dynamic. https://www.scala-lang.org/api/2.13.1/scala/Dynamic.
html

[4] Python Software Foundation. 2020. Thread State and the Global Inter-
preter Lock. https://docs.python.org/3/c-api/init.html#thread-state-
and-the-global-interpreter-lock

[5] Google. 2020. Swift for TensorFlow. https://www.tensorflow.org/swift
[6] Google. 2020. TensorFlow 2 Quickstart for Beginners. https://www.

tensorflow.org/tutorials/quickstart/beginner
[7] Mike Johnson et al. 2020. Jep - Java Embedded Python. https://github.

com/ninia/jep
[8] Sheng Liang. 1999. The Java native interface: programmer’s guide and

specification. Addison-Wesley Professional.
[9] Netflix. 2019. polynote/polynote - A better notebook for Scala (and more).

https://github.com/polynote/polynote
[10] Martin Odersky et al. 2020. Dotty Compiler: A Next Generation Compiler

for Scala. EPFL. https://dotty.epfl.ch
[11] Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type

Classes as Objects and Implicits. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’10). Association for Computing Machinery,
New York, NY, USA, 341–360. https://doi.org/10.1145/1869459.1869489

[12] Antoine Pitrou. 2013. PEP 442 – Safe object finalization. Python Soft-
ware Foundation. https://www.python.org/dev/peps/pep-0442/

[13] Emmanouil Platanios. 2020. TensorFlow Scala. https://github.com/
eaplatanios/tensorflow_scala

[14] Python Software Foundation. 2020. Python/C API Reference Manual.
https://docs.python.org/3/c-api/index.html

[15] Norman Ramsey. 2003. Embedding an Interpreted Language Using
Higher-Order Functions and Types. In Proceedings of the 2003Workshop
on Interpreters, Virtual Machines and Emulators (IVME ’03). Association
for Computing Machinery, New York, NY, USA, 6–14. https://doi.org/
10.1145/858570.858571

[16] Denys Shabalin and Martin Odersky. 2018. Interflow: Interprocedural
Flow-Sensitive Type Inference and Method Duplication. In Proceedings
of the 9th ACM SIGPLAN International Symposium on Scala (Scala 2018).
Association for Computing Machinery, New York, NY, USA, 61–71.
https://doi.org/10.1145/3241653.3241660

[17] Eric Snow. 2018. PEP 554 – Multiple Interpreters in the Stdlib. Python
Software Foundation. https://www.python.org/dev/peps/pep-0554/

[18] Talin. 2007. PEP 3115 – Metaclasses in Python 3000. Python Software
Foundation. https://www.python.org/dev/peps/pep-3115/

[19] Pedro José Pereira Vieito. 2020. pvieito/PythonKit - Swift framework to
interact with Python. https://github.com/pvieito/PythonKit

[20] Timothy Wall et al. 2020. java-native-access/jna: Java Native Access.
https://github.com/java-native-access/jna

http://infoscience.epfl.ch/record/190834
http://infoscience.epfl.ch/record/190834
https://doi.org/10.1145/2998392.2998404
https://www.scala-lang.org/api/2.13.1/scala/Dynamic.html
https://www.scala-lang.org/api/2.13.1/scala/Dynamic.html
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://www.tensorflow.org/swift
https://www.tensorflow.org/tutorials/quickstart/beginner
https://www.tensorflow.org/tutorials/quickstart/beginner
https://github.com/ninia/jep
https://github.com/ninia/jep
https://github.com/polynote/polynote
https://dotty.epfl.ch
https://doi.org/10.1145/1869459.1869489
https://www.python.org/dev/peps/pep-0442/
https://github.com/eaplatanios/tensorflow_scala
https://github.com/eaplatanios/tensorflow_scala
https://docs.python.org/3/c-api/index.html
https://doi.org/10.1145/858570.858571
https://doi.org/10.1145/858570.858571
https://doi.org/10.1145/3241653.3241660
https://www.python.org/dev/peps/pep-0554/
https://www.python.org/dev/peps/pep-3115/
https://github.com/pvieito/PythonKit
https://github.com/java-native-access/jna

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions

	2 Embedding Python in Scala
	2.1 Cross-Platform Interpreter Bindings
	2.2 Scala-Python Heap Synchronization
	2.3 Thread Safety and the Global Interpreter Lock

	3 High-Level Python Interface
	3.1 Python API Entrypoints
	3.2 Type Hierarchy and Correspondence
	3.3 Python to Scala Conversions
	3.4 Scala to Python Conversions
	3.5 Function Conversions

	4 Dynamic and Static Typed Python Interfaces
	4.1 Dynamic Interface with py.Dynamic
	4.2 Static Interfaces with @py.native

	5 Scala-Python Data Sharing
	5.1 Loading Python Sequences in Scala
	5.2 Sending Scala Sequences to Python

	6 Evaluation
	6.1 Interoperability Benchmarks
	6.2 Production Applications

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

