
VizSmith: Automated Visualization Synthesis by
Mining Data-Science Notebooks

Rohan Bavishi
University of California, Berkeley

rbavishi@cs.berkeley.edu

Shadaj Laddad
University of California, Berkeley

shadaj@cs.berkeley.edu

Hiroaki Yoshida
Fujitsu Research of America

hyoshida@fujitsu.com

Mukul R. Prasad
Fujitsu Research of America

mukul@fujitsu.com

Koushik Sen
University of California, Berkeley

ksen@cs.berkeley.edu

Abstract—Visualizations are widely used to communicate find-
ings and make data-driven decisions. Unfortunately creating
bespoke and reproducible visualizations requires the use of
procedural tools such as matplotlib. These tools present a steep
learning curve as their documentation often lacks sufficient usage
examples to help beginners get started or accomplish a specific
task. Forums such as StackOverflow have long helped developers
search for code online and adapt it for their use. However,
developers still have to sift through search results and understand
the code before adapting it for their use.

We built a tool called VIZSMITH which enables code reuse
for visualizations by mining visualization code from Kaggle
notebooks and creating a database of 7176 reusable Python
functions. Given a dataset, columns to visualize and a text query
from the user, VIZSMITH searches this database for appropriate
functions, runs them and displays the generated visualizations
to the user. At the core of VIZSMITH is a novel metamorphic
testing based approach to automatically assess the reusability of
functions, which improves end-to-end synthesis performance by
10% and cuts the number of execution failures by 50%.

I. INTRODUCTION

Visualizations are increasingly being used across various do-
mains, including academic research, journalism, and business
intelligence, to communicate insights and enable data-driven
decision making [1], [2]. The need for bespoke visualizations
and reproducible analytical workflows [3] requires the use of
powerful procedural visualization tools such as ggplot and
matplotlib [4], [5]. However these tools also have a steep
learning curve for novices and domain experts with little
programming background. Tool documentation pages function
well as a reference but often lack sufficient snippets or
examples to help beginners get started.

This has led to a huge surge in popularity of technical Q&A
forums such as StackOverflow and social programming plat-
forms like GitHub as they facilitate code reuse [6]. Analysts
can search for usage-examples or even complete recipes [7],
[8] to incorporate directly into their workflow.

In practice, however, code reuse in software development
has largely been sub-optimal [8], [9] due to two main reasons.
First, the code results returned by StackOverflow may be
incomprehensible to relatively new users, making it difficult
for them to modify and reuse that code [8]. Second, there is
a proliferation of similar questions on StackOverflow which

ends up pushing the burden of selecting the right solution to
the end user, who may not be familiar with the specifics of
the visualization tools.

Facilitating better code reuse has been a subject of active
research [9]–[16]. This includes improving the quality of
search results [14], as well adapting the code using additional
specifications such as test-cases or type signatures of target
methods [9], [11]. None of these are however applicable in the
context of visualizations. Wang et al. [17], [18] use a synthesis-
powered approach to generate visualization programs in a lim-
ited DSL given partial or incomplete visualizations. However,
this can be insufficient when a helpful partial visualization is
difficult to provide, such as when visualizing the correlation
matrix of a large table.

In this paper, we present and evaluate an approach for fa-
cilitating code reuse in generating visualizations. We leverage
the fact that machine learning platforms such as Kaggle [19]
host scores of executable data science notebooks that also
include the raw dataset. We developed a tool VIZSMITH that
analyzes these notebooks and mines a knowledge base of
visualization functions, which are Python functions that take
an input table and the set of columns to visualize as input
and produce a visualization as output. VIZSMITH provides
a frontend where users can provide a dataframe and the
columns to visualize along with a text query. VIZSMITH finds,
ranks, and executes the functions best matching the query, and
displays the synthesized bespoke visualizations.

At the heart of VIZSMITH lies a novel analysis for de-
termining the quality or reusability of a mined visualization
function. The analysis allows it to discard low-quality code
upfront which greatly helps in improving both quality and
speed of synthesis. To the best of our knowledge, we are the
first to provide a precise conceptual definition of reusability
in the context of visualization code. We also develop a novel
approach based on metamorphic testing that approximates
this definition, for automatically evaluating reusability of any
arbitrary visualization function. In summary, our contributions
within VIZSMITH are as follows:
1) A framework for mining visualization functions from Kag-

gle that yields a knowledge base of 7126 reusable functions
mined across 1280 notebooks and 10 competitions.

def visualization(df, col1, col2):
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
tab = pd.crosstab(df0[col1], df0[col2])
tab.div(tab.sum(1).astype(float), axis=0)\

.plot(kind="bar", stacked=True)
plt.ylabel('Text-1’)
plt.title('Text-2’)

visualization(df=df,
col1='Operator’,
col2='Call Drop Category')

A

B

C

Create new cell with code

Full Screen View

Fig. 1: VIZSMITH’s Jupyter notebook frontend. VIZSMITH is provided with a table as a Pandas dataframe along with columns
to visualize as input. It has a search bar to input text queries. (A) shows how Alice uses VIZSMITH to search for normalized
stacked bar charts for her call quality dataset. (B) and (C) show the visualization selected by Alice and its code respectively.

2) A conceptual definition of reusability in the context of
visualizations along with a novel decision procedure based
on metamorphic testing that achieves 73% precision and
71% recall with respect to a ground truth obtained via
manual inspection.

3) A synthesis engine that takes as user input a dataframe and
the columns to visualize. In a cross-project experiment,
the target visualization is contained in the top-10 results
returned by VIZSMITH for 56% of our benchmarks.

4) A publicly available front-end and demo at https://github.
com/rbavishi/vizsmith-demo.

II. MOTIVATING EXAMPLE

Alice is a researcher working on a project on analyzing the
voice call quality dataset released by the Indian government
[20] containing customer ratings. As part of her project, Alice
needs to build a visual dashboard that updates every time new
data comes in. She has heard about rich data transformation
and visualization libraries in Python such as pandas and
matplotlib and decides to use them for this purpose.

In her dashboard, Alice wants to include a visualization of
the distribution of customer ratings for every network operator
individually, normalized by the number of records for every
operator. She decides that a normalized stacked bar chart with
a bar for every operator would be appropriate for this purpose.

Alice promptly writes code to load the dataset into a pandas

dataframe. Unsure about how to create a stacked bar chart, she
visits the matplotlib gallery entry for this chart [21] only to
find it insufficient for her needs. She is also uncertain about
exactly how to transform her dataframe in order to create the
bar chart. She turns to StackOverflow for help and browses
the results for the query “matplotlib pandas normalized

stacked bar chart”.

The top result [22] contains a visualization close to what
Alice needs, but she has trouble understanding the code, let
alone adapting it for her data. This experience is in line with
the findings of previous work [8].

Figure 1 demonstrates how Alice uses VIZSMITH to find
the visualization of her choice along with code to produce
it. First, Alice fires up the frontend of VIZSMITH, which is
implemented as a Jupyter notebook [3] widget. Alice provides
VIZSMITH with her dataframe as well as the columns she
wants to visualize. VIZSMITH then presents a search bar where
Alice provides the same query as before.

VIZSMITH then consults its knowledge base of visualiza-
tion functions that it has mined from the machine learning
notebooks written by data scientists on Kaggle. VIZSMITH
utilizes dynamic program analysis and metamorphic testing
to construct these functions. These visualization functions are
regular Python functions that take a dataframe as an argument
along with column arguments and produce a visualization
after performing any necessary dataframe transformations.
VIZSMITH indexes these functions using the names of the
API functions and their keyword arguments, along with the
natural language comments found in the Kaggle notebooks.
Given Alice’s keywords, VIZSMITH finds the best matching
functions, runs them and presents the resulting visualizations
in a gallery view as shown in Figure 1. VIZSMITH allows
Alice to expand a particular visualization to a full-screen view
as well as study the code for the visualization.

Alice finds her desired visualization in this list right away,
shown in (B) in Figure 1. VIZSMITH also produces many
similar visualizations with small styling variations. The code
for the visualization is shown in (C) and illustrates the inherent
complexity of the task as it needs a combination of three
pandas functions, namely crosstab, div and sum followed

https://github.com/rbavishi/vizsmith-demo
https://github.com/rbavishi/vizsmith-demo

Data + Text
Query

Kaggle
Notebooks

Instrumented
Execution +
Dependency

Graph

Visualization
Slices +

Minimization

Extract
Visualization

Functions

Reusability
Analysis

Mined
Database

Offline Phase

Mined
Database

Online Phase

Ranked
Visualization

Functions

Scoring
Argument

Combinations
+ Execution

Visualizations

Fig. 2: Overview of VIZSMITH.

by the call to plot. Alice copies the code into her workflow,
and adjusts the title and y-axis labels.

Thus, VIZSMITH enables better code reuse by eliminating
the burden of understanding and adapting code found online.

III. OVERVIEW OF VIZSMITH

Figure 2 presents a high-level overview of VIZSMITH. In
the offline phase, VIZSMITH collects and mines visualization
functions from Python notebooks hosted on the machine learn-
ing platform Kaggle [19] (Section IV). VIZSMITH also ana-
lyzes the functions using a novel metamorphic testing scheme
(Section V) to discard functions ill-suited for synthesis. In the
online phase, VIZSMITH receives from the user, a dataframe as
well as the set of columns in the dataframe that participate in
the desired visualization along with a search query. VIZSMITH
first uses the query to collect a ranked list of functions to
explore (Section VI-A). Then it finds appropriate arguments to
the parameters of each function, and executes them all. Finally,
VIZSMITH collects and displays the generated visualizations
in a Jupyter notebook user interface.

IV. MINING

We first describe the component of our system responsible
for collecting notebooks from Kaggle, replaying them and
harvesting visualization code from the notebook runs.

A. Collecting and Replaying Notebooks

We sort the list of competitions on Kaggle by the number of
teams participating in the competition. From the top-50 such
competitions, we pick those where the dataset corresponds to
a single csv/tsv file. We additionally include the titanic and
house-prices competitions as they are the most well-known
classification and regression tasks on Kaggle respectively,
resulting in a total of 10 competitions (Table II).

Within these competitions, we only select kernels that have
an associated Docker image ID which can be downloaded from
Kaggle’s GCR repository1. To conserve resources, we ignore
GPU-based kernels and impose a timeout of 10 minutes on
each kernel run. For competitions with large datasets (>50k
rows), we take a sample of the dataset in order to reduce the
execution time.

1https://gcr.io/kaggle-images/python

B. Instrumentation and Execution

We perform source-level instrumentation of the scripts
collected before execution to facilitate the construction of
the dependency graph. We define the dependency graph of
a program P as a graph G such that the nodes correspond
to the simple statements in P . A dependency edge exists
between nodes n1 and n2 if the statement corresponding to
n2 is data-dependent or control-dependent on the statement
at n1. Data-dependence implies that n2 uses some variables
or data defined or modified at n1. Control-dependence means
that if n1 determines whether n2 executes or not, which is the
case when n1 is an if-statement or a looping statement.

Our source-level instrumentation adds wrapper functions to
record essential runtime information such as variable reads
and writes, as well as types and memory locations of ob-
jects. This information helps us construct the dependency
graph. Note that we do not instrument code corresponding to
built-in or third-party libraries. Therefore, to capture library
dependencies correctly, we construct a separate database of
function specs with one entry for each built-in and API
function. For every function, we determine if it has side-
effects, based on the arguments to the function. We write
such specs for methods of inbuilt types such as lists, sets
and dictionaries as well as API functions from popular data
science libraries, namely pandas, matplotlib, seaborn, numpy
and scikit-learn. These specs are quite coarse — given
the function call df.drop(columns=["Low"], inplace=True),
our spec for drop only records that the dataframe df is mod-
ified, instead of the precise column “Low” that was updated.
This keeps our implementation simple at the cost of spurious
dependency edges.

C. Visualization Objects and Visualization Slices

Over the course of execution of a program P , we collect the
Python objects corresponding to individual visualizations. In
our implementation, we focus on the matplotlib library as
well as its wrapper library seaborn, so we track all unique
Python objects of the type matplotlib.pyplot.Figure. We
call such an object a visualization object, or simply visual-
ization. We say that visualizations ν1 and ν2 are the same if
the corresponding images obtained after serialization/rendering
are a pixel-by-pixel match. For matplotlib, this corresponds
to the output of the matplotlib.pyplot.Figure.savefig API
function.

For every visualization ν seen over the execution of program
P , we construct a visualization slice defined as follows:

Definition 1 (Visualization Slice). We define the visualization
slice of a program P with respect to a visualization object ν,
denoted as VizSlice(P, ν), as a program P ′ that can be obtained
by removing statements from P such that, when executed, P ′

produces the same visualization ν and only ν.

Thus, a visualization slice contains all the statements in
a program necessary for recreating a particular visualization.
Figure 3 contains a slice of the linked Kaggle notebook for

https://gcr.io/kaggle-images/python

1 import pandas as pd
2 import seaborn as sns
3 sns.set_style('white')
4 df_train = pd.read_csv("../input/train.csv")
5 df_train.fillna(df_train.mean(), inplace=True)
6 df = df_train[['Age']]
7 ax = sns.distplot(df['Age'], kde=False)
8 ax.set(xlabel='Age', ylabel='Frequency')

Fig. 3: Example of a visualization and a corresponding slice
extracted from Kaggle.

1 import pandas as pd
2 import seaborn as sns
3 df_train = pd.read_csv("../input/train.csv")
4 df_train.fillna(df_train.mean(), inplace=True)
5 ax = sns.distplot(df_train['Age'], kde=False)
6 ax.set(xlabel='Age', ylabel='Frequency')

Fig. 4: Minimized version of visualization slice in Figure 3.

the shown visualization. Furthermore, the slice should only
produce a single visualization.

We use standard dynamic program slicing [23] to obtain
a visualization slice. Specifically, we remove all statements
in P that are not reachable via a backward-traversal of the
dependency graph of P starting from any of the statements in
in the set VizStmts(P, ν) defined below:

Definition 2 (VizStmts(P, ν)). VizStmts(P, ν) is the set of all
statements in the program P that directly create/modify the
visualization object ν.

In Figure 3, the statements in lines 5-6 correspond to
the set returned by VizStmts for the program corresponding
to the parent notebook and the visualization object being
the actual plot at the top of Figure 3. The first creates the
distribution plot, while the second sets the labels of the axes.
The remaining statements in Figure 3 modify the style, load
the dataframe and modify it before visualization and are hence
included in the slice.

D. Minimizing Visualization Slices

Recall that our dependency graph construction is not precise
as we use coarse specifications for third-party libraries. As a
result, the visualization slice obtained via dynamic program
slicing may still contain irrelevant statements whose removal
will not affect the visualization. Consider the slice in Figure 3.
The call to set_style in line 3 is unnecessary as the style is
"white" by default. It is included in the slice because it writes
to an internal styling dictionary which is then read in the call
to distplot thereby establishing a dependency. Taking the
subset of columns in line 6 is also unnecessary as distplot

only receives the target column anyway. We can remove both
these operations to yield a simpler, minimized visualization
slice, as shown in Figure 4.

How do we obtain the minimized visualization slice in
Figure 4 from the slice in Figure 3? Note that it is not enough
to simply remove or delete code as one might do if they were
using delta-debugging [24]; removing lines 3 and 6 in Figure
3 would lead to an undefined variable error for df. Essentially,
we need transformations that go beyond code removal.

We instantiate the generalized syntax-guided program re-
duction framework developed in PERSES [25] to enable this
minimization. In particular, we use standard statement-level
delta-debugging to remove top-level statements whose removal
does not change the generated visualization. Additionally,
we use a transformation where we replace a usage of a
variable holding a dataframe with the usage of a previously
defined variable, also holding a dataframe. We keep alternating
between these two transformations until the slice cannot be
minimized further without altering the visualization. Alter-
nation helps here because one transformation may introduce
minimization opportunities for another. Algorithm 1 describes
this procedure.

Algorithm 1 Minimization Algorithm Pseudocode
1: function MINIMIZE(Pν)
2: current ← Pν ; change ← true
3: while change is true do
4: change ← false
5: variant ← DELTADEBUG(current)
6: if variant 6= current then
7: current ← variant; change ← true
8: for variant in DFVARREPLACE(current) do
9: if variant produces same visualization then

10: current ← variant; change ← true
11: break
12: Pmin

ν ← current
13: return Pmin

ν

We walk through how the algorithm minimizes the slice in
Figure 3. In the first iteration, delta-debugging (line 5) would
remove the call to set_style in line 3, Figure 3. Then we iter-
ate over variants returned by DFVARREPLACE. DFVARREPLACE

replaces a use of a variable holding a dataframe by a use of an-
other previously defined variable holding a different dataframe.
If there are many possibilities, DfVarReplace explores variants
in the descending order of the gap between the original and
replacing definitions of the variables, measured in the number
of statements. The variant where df is replaced with df_train

is retained. Then line 6 in Figure 3 gets removed in the second
iteration, and the algorithm exits after the third iteration as
no further minimization occurred, successfully returning the
desired slice in Figure 4.

The reasons behind selecting these two transformations are
two-fold. First, data-science code has minimal control flow.
Hence, focusing on top-level statements is sufficient. Secondly,
data-transformation logic almost always involves applying API
functions on variables holding the data (dataframes). Since

1 import pandas as pd
2 import seaborn as sns
3 df_train = pd.read_csv("../input/train.csv")
4 df_train.fillna(df_train.mean(), inplace=True)
5 ax = sns.distplot(df_train['Age'], kde=False)
6 ax.set(xlabel='Age', ylabel='Frequency')

1

2
3

4

5

6

Fig. 5: Dependencies between top-level statements for code
in Figure 3. Edges labeled 1, 3, 4, 5 and 6 capture depen-
dency between the use and definition of a variable (df_train,
df_train, ax, sns and pd respectively) while 2 captures the
dependency between attribute reads and writes of an object
(the dataframe in df_train).

1 def visualization(df, col1):
2 import seaborn as sns
3 df.fillna(df.mean(), inplace=True)
4 ax = sns.distplot(df[col1], kde=False)
5 ax.set(xlabel=col1, ylabel='Frequency')

(a) Visualization function using b=3 and variable as df_train.

1 def visualization(df, col1):
2 import seaborn as sns
3 ax = sns.distplot(df[col1], kde=False)
4 ax.set(xlabel=col1, ylabel='Frequency')

(b) Visualization function using b=4 and variable as df_train.

Fig. 6: Visualization functions extracted from slice in Figure 3.

visualization slices can be slow to execute as they use heavy-
weight libraries, our restricted set of transformations strike a
balance between scalability and quality of minimization.

E. Extracting Visualization Functions

In this section, we describe how VIZSMITH creates visu-
alization functions from a visualization slice. Visualization
functions form the basic unit of VIZSMITH’s mined database
which it uses for synthesis. Throughout this section, whenever
we refer to a visualization slice, we assume it is minimized.

A visualization function is formally defined as follows:

Definition 3 (Visualization Functions). A visualization func-
tion f is a Python function with a single dataframe parameter
df and m column parameters col1, . . . , colm that produces a
visualization.

Note that while the above definition restricts a visualization
function to a single dataframe parameter, our technique has no
such inherent restriction. We adopt this definition to simplify
the discussion and the notation used throughout the paper.

At a high level, visualization functions can be extracted
from a visualization slice by converting variables holding ref-
erences to dataframes into parameters and abstracting concrete
references to columns into column parameters. The body of the
function contains only the statements from the slice required to
reproduce its visualization given the new dataframe argument.
Figure 6 shows two visualization functions from the visual-
ization slice in Figure 3. Each of them has a single column
parameter col1. Both produce a visualization containing the

distribution plot of the supplied column, with the function
in Figure 6a performing an extra imputation step to replace
missing values by the mean of their respective columns. We
call the slice Pν from which a visualization function f is
obtained as the parent slice of f .

Algorithm 2 formalizes the idea. Given a visualization slice
Pν producing visualization ν and its dependency graph G,
for every program point b between the top-level statements of
the slice (line 4) , and every variable var holding a reference
to a dataframe object valdf that is in scope at b (line 6), we
extract a visualization function as follows. We set the body
of the function to be a subset of the statements in Pν , with
the variable var renamed to df (the dataframe parameter). This
subset is the smallest such that if the function is executed with
the initial value of df as valdf in the exact same state it was
at program point b in the slice, the resulting visualization is
the same as ν. This subset is obtained using backward slicing
(lines 7-10), but on a subgraph Gr of G. Gr has the same set
of nodes as G, but does not contain any dependency edges in
G that originate before the boundary and that arise because of
the use of the variable var or the dataframe valdf. This helps us
pick only the statements necessary to reproduce visualization
ν if var is already assigned to valdf to begin with.

Algorithm 2 Extracting Visualization Functions

GETVARDFS(Pν , b) returns the set of dataframe variables in
scope at program point b in Pν along with their values.
ISDATAFRAMEEDGE(e, var, dfvar) returns true if the edge e is a
data-dependency edge resulting from the use of variable var
or dataframe valdf. REACHABLE(si, Gr, root) checks if si is
reachable from root via a backwards traversal of Gr .

1: function EXTRACTVIZFUNCTIONS(Pν , ν, G)
2: 〈s1, . . . , sk〉 ← top-level statements in Pν
3: funcs ← ∅
4: for each program point b ∈ [1, k] do
5: Sb ← {s1, . . . , sb}
6: for each (var, dfvar) ∈ GETVARDFS(Pν , b) do
7: Er ← {e|e ∈ EDGES(G) ∧ SRC(e) ∈ Sb

∧ ISDATAFRAMEEDGE(e, var, dfvar)}
8: Gr ← induced subgraph of G by removing edges in Er

9: root ← VIZSTMTS(Pν , ν)
10: body ← {si | si ∈ {s1, . . . , sk}

∧ REACHABLE(si, Gr, root)}
11: Sforbid ← {s|s ∈ Sb ∧ var is used in s}
12: if Sforbid ∩ body = ∅ then
13: f .df param ← df
14: f .body ← RENAMEVAR(body, var, df)
15: f .col params, f .body ← INFERCOLPARAMS(f, dfvar)
16: if VERIFY(f) then
17: funcs ← funcs ∪ {f}
18: return funcs

For example, suppose b=3 and var=df_train and the slice
under consideration is the one in Figure 3. The graph Gr
would not contain the edges 1 and 3 in Figure 5 as they
originate right after the statement at line 3 (before b), and arise
due to the use of the dataframe variable df_train. The edge
2 is included as it originates after b.

Lines 11-12 confirm that the selected statements which
appear before the selected program point b do not involve

1 def visualization(df):
2 import seaborn as sns
3 sns.heatmap(df.corr())

Fig. 7: A visualization function taking no arguments.

the use of variable var. This prevents any dependency on a
possibly stale version of valdf. Then, we infer column param-
eters by simply replacing all string constants that correspond
to a column name in valdf with parameter variables (line 15).
In Figure 3, this corresponds to the string "Age" in lines
5 and 6. We also rewrite attribute based column-accesses
of dataframes, such as df.Column as df["Column"] prior to
applying this procedure. We denote the mapping from these
column parameters to the string constants as ORIGCOLS(f).
We refer to the selection of valdf as ORIGDF(f).

Finally, in line 16, we verify if running the visualization
function with valdf i.e. ORIGDFS(f) and ORIGCOLS(f) repro-
duces the visualization from the parent visualization slice.
Figure 6 contains the two visualization functions extracted
from the visualization slice in Figure 3. Observe that no
choices for a dataframe variable would be available if we pick
the program point b as either 1 or 2.

In this way we are able to obtain 9740 visualization func-
tions across 1188 Kaggle notebooks. Additionally, for each
visualization function, we also have access to the original
dataframe and column arguments needed to reproduce the
visualization as seen in the parent notebook via ORIGDF and
ORIGCOLS. We utilize this information heavily when analyzing
these functions and using them for synthesizing visualizations
in the next two sections.

F. Participating Columns vs. Column Parameters

Visualization functions have dataframe and column pa-
rameters. It is important to note that column parameters do
not necessarily correspond to the exact subset of columns
that actually participate in the visualization. For example,
the function in Figure 7 accepts no column arguments, but
produces a correlation heatmap of all the numeric columns
in the passed dataframe. We call such columns implicitly
participating columns. Consequently, we call a column as
explicitly participating if it is passed as a column argument.

We can decide if a column is implicitly participating using
a simple mutation-based strategy—for every column c in
ORIGDF(f) that is not mapped in ORIGDFS(f), we drop c from
ORIGDF(f) and check if the visualization is the same after
executing the function. If it is not, the column c is implicitly
participating.

We denote the set of columns visualized (explicit
or implicit) by f for the dataframe ORIGDF(f) as
ORIGPARTICIPATINGCOLS(f). This notion of participation is at
the heart of the reusability analysis as well as visualization
synthesis as we shall see next.

V. ANALYSIS OF MINED VISUALIZATION FUNCTIONS

Before we use the generated visualization functions for
synthesis, we need to assess their quality. What makes a mined

1 def visualization(df, col1):
2 import matplotlib.pyplot as plt
3 counts = df[col1].value_counts()
4 porct =counts/1460*100
5 label = []
6 for i in range(len(counts)):
7 label.append(counts.index[i] + " "+ '{0:.2f}
8 sizes = [1141, 286, 13, 11, 7, 2]
9 colors = ['steelblue', 'skyblue', 'navy',
10 'blue', 'red', 'green']
11 fig, ax = plt.subplots()
12 ax.pie(sizes, colors=colors, shadow=False,
13 startangle=0)
14 ax.axis('equal')
15 ax.legend(label, shadow=True)

Fig. 8: A visualization function with hard-coded values.

1 def visualization(df, col1, col2):
2 import seaborn as sns
3 sns.set(font_scale=2.5)
4 df[df[col1] == 1][col2].hist()

Fig. 9: A visualization function using a specialized predicate.

visualization function “good” (or “bad”) in the context of
synthesis? Since synthesis, by its very nature, involves the con-
struction of visualizations for an unseen dataframe, a visualiza-
tion function should be considered “good” or reusable if, given
appropriate assignments to column parameters, it produces
meaningful visualizations for a broad class of dataframes, and
“bad” or non-reusable otherwise. We illustrate our notions of
meaningful and broad using examples.

Consider the visualization function in Figure 8. Note that the
data-values passed to ax.pie in line 12 are hard-coded in the
function. That is, regardless of the dataframe and categorical
column passed to the function, the produced visualization will
be exactly the same. The produced visualization is thus not
meaningful. If this function is used in a visualization synthesis
setting, its resulting visualization would most likely make no
sense to the user, and could undermine trust in the system.
Thus we deem this function to be non-reusable. This also
illustrates why a successful execution of a function does not
necessarily entail a meaningful visualization.

In contrast, we consider the function in Figure 7 as “good”
or reusable. It will correctly produce a correlation heatmap for
the class of dataframes that have at least one numeric column.
This class clearly includes a wide variety of dataframes and
hence we consider this function reusable.

Figure 9 presents a much more subtle scenario. The function
plots a histogram of the values in col2, but only considers the
rows where the value corresponding to col1 is 1. This filtering
criteria is quite arbitrary and only meaningful for dataframes
that contain a 1. We thus deem this function non-reusable..

A. Defining Reusability

We consolidate the ideas developed in the above discussion
in the following definition of reusability

Definition 4 (Reusable Visualization Function). We consider
a visualization function f reusable if there exists a set Sdf of
dataframes such that:

1) f produces a meaningful visualization for every dataframe
df in Sdf, given an appropriate assignment of df’s columns
to f ’s parameters. A meaningful visualization is non-empty
and represents all the information in df or a filtered view
of df where the filtering criterion is independent of the
concrete data values in df.

2) Sdf can be characterized using high-level properties of a
dataframe and its columns including types of columns and
types of data values, but excluding properties relying on
arbitrary constants or values in the data.

Note that a meaningful visualization need not follow best
visualization design practices that would make it “meaningful”
for an end-user. With reusability, we are only concerned about
its relationship to the data and the visualization function code.

Ideally, we would like to be able to automatically clas-
sify our mined visualization functions as reusable and non-
reusable and discard the non-reusable functions. However it
is hard to automatically check if a visualization function
is reusable according to Definition 4 as we do not have
access to Sdf. Essentially, we are faced with the problem of a
missing test-oracle [26]. We present a novel approach of using
metamorphic-testing [27] to alleviate this issue.

B. Metamorphic Testing for Checking Reusability

Metamorphic testing relies on a metamorphic relation (MR):
a property that must be satisfied by the outputs of a function
for different inputs. Our choice of this property for a visual-
ization function f is defined as follows:

Definition 5 (MR for Approximating Reusability). Visual-
izations produced by f on mutated copies of its original
dataframe i.e. ORIGDF(f) must all be different from each other
as well as the original visualization of f .

These mutated dataframes are produced using column-level
type-aware mutation operators. Definition 5 along with these
mutation operators approximates the concept of reusability in
Definition 4 in two ways. First, these operators only modify
one column, and take the column type (categorical, quantita-
tive etc.) into account. This helps increase the likelihood of
staying within the class of dataframes f is appropriate for.
It also ensures that this class is characterizable using simple
properties like column types. Second, the mutations applied
are large enough to warrant a change in the visualization
if f truly produces a visualization that represents all the
information in the dataframe or a meaningful subset of it. This
helps catch cases like Figure 8 and Figure 9

Algorithm 3 formalizes our metamorphic testing strategy.
For every visualized column c ∈ ORIGPARTICIPATINGCOLS(f),
we check if there exists a mutation operator for which the
metamorphic relation is satisfied for the mutated dataframes it
generates. Every mutation operator has a guard that must be
true for it to be applicable (line 7).

Our mutation operators for columns take the type of the col-
umn into account and are listed in Table I. We recognize four
distinct types of columns, namely categorical, quantitative, ID

Algorithm 3 Checking Reusability using Metamorphic Testing
1: function ISREUSABLE(f)
2: dforig ← ORIGDF(f); νorig ← ORIGVIZ(f)
3: for each c ∈ ORIGPARTICIPATINGCOLS(f) do
4: success ← false
5: for each mutation operator m for COLTYPE(c, dforig) do
6: s ← initialize m
7: if GUARD(m, dforig, c, s) then
8: df1, . . . , dfk ← m(dforig, c, s)
9: ν1, . . . , νk ← viz produced by f on df1, . . . , dfk

10: if (∀i. νi 6= νorig) ∧ (∀i 6= j. νi 6= νj) then
11: success ← true
12: break
13: if success is false then
14: return false
15: return true

and nominal. At a high-level, for each type of column, we
design a mutation operator for each of the different ways in
which a column of that type may participate in a visualization.
We walk through the operators for the two most common types
of columns: categorical and quantitative.

a) Categorical Columns: The visualization may be a
function of either (1) the individual category labels in the
column, or (2) the count distribution of categories or (3)
whether a value is a NaN (missing value). Note that the
visualization may represent a function of these properties,
which may not necessarily be identity. The first operator in
Table I selects a fixed subset of values and replaces them
with one or more unseen categories. Thus, if a function relies
on hard-coded values or too arbitrary a filtering process, the
resulting visualizations should be the same and thus fail the
check. The second operator enables the check of whether the
visualization is sensitive to whether values are NaNs or not,
rather than their concrete values themselves. It also has a guard
which checks whether substituting the same missing values
with different categories yields the same result as the original.
This ensures that cases like Figure 9 do not pass the check.

b) Quantitative Columns: The visualization may be a
function of either (1) the values, or (2) a statistical function of
those values or (3) whether a value is a NaN. The first operator
shifts and scales the data by different amounts and adds
some Gaussian noise, thus testing (1) and (2). We add noise
because some statistical functions such as Pearson correlation
are robust to uniform scaling and shifting. The magnitude of
the shift is at least as large as the range of values to ensure
zero overlap with the original range of values. Null values are
handled similarly as in categorical columns.

The mutation operators for ID and nominal columns are
designed using similar principles. VIZSMITH is able to discard
26% of mined functions by classifying them as non-reusable
via this approach. We evaluate how well the metamorphic test-
ing approach approximates the main definition of reusability
in Section VII-B.

TABLE I: Column Mutation Operators

Column Type Mutation Operator Guard
Categorical Replacing a fixed subset of values with new categories -
Quantitative Shifting and Scaling Values + Gaussian Noise -
Categorical/Quantitative Replacing a fixed subset of values with missing values Replacing the same subset with arbitrary values does not change visualization
ID Random Permutation -
Nominal Replace a subset of values with a sample from the remaining values -
Nominal Replacing a fixed subset of values with missing values Replacing the same subset with values sampled from the column does not

change visualization

VI. VISUALIZATION SYNTHESIS

VIZSMITH accepts a user specification comprising
dataframes, a list of columns in each dataframe that need
to participate in the visualization, and a search query.
VIZSMITH uses the search query to get a ranked list of
visualization functions from the database obtained using
the mining and analysis components from Sections IV and
V. Then for each function, VIZSMITH determines the best
possible assignments to the dataframe and column arguments,
runs the function, collects the visualizations generated and
presents them to the user after deduplication.

A. Search
VIZSMITH associates each mined visualization function

with a text document that contains (a) the natural language
comments around the visualization statements in the parent
notebook, (b) the text in the title and axis labels of the
visualization in the parent notebook, (c) the names of the
API functions used and (d) the API documentation of the API
functions used in the visualization function. We collect com-
ments from the notebook under the assumption that authors
often attach meaningful comments describing the logic in and
before/after cells, although this may not always be true.

Given a search query, we rank documents according to their
similarity with the search query using BM25 [28]. To obtain
a ranked list of visualization functions, we simply map the
documents back to their respective visualization functions.

B. Generating Visualizations
VIZSMITH adapts the ranked visualization functions to the

user-provided dataframe using the INSTANTIATE function in
Algorithm 4. It takes as input the mined visualization function
f , the user supplied dataframe df and the columns that must
participate in the visualization vcols.

In the first phase (lines 3-4), the set of mappings from the
column parameters of f to a subset of vcols is computed. A
mapping is valid if (a) it has a non-zero score, and (b) the
columns in vcols that have not been assigned to a parameter
as per the mapping are eligible to be visualized implicitly.

The SCORE function computes the score of a mapping m for
a visualization function f by comparing m to ORIGCOLS(f).
Recall that ORIGCOLS(f) is the mapping column parameters to
the string values in the parent visualization slice of f . Essen-
tially SCORE checks the compatibility between the columns
using high-level properties such as column, data-types and
presence of null values.

We consider a column eligible to participate implicitly
(ISIMPLICITCAND), if there exists a column in the original set

Algorithm 4 Instantiating Visualization Functions
1: function INSTANTIATE(f, df, vcols)
2: V ← ∅; params ← COLPARAMS(f)
3: M ← set of all injective maps from params to vcols

. Score is non-zero and every col in vcol is mapped to a
param or potentially implicit

4: Mvalid ← {m|m ∈ M ∧ SCORE(f, df,m) > 0 ∧ ∀c ∈
vcols. (ISIMPLICITCAND(f, df, c) ∨ ∃p ∈ params. m[p] = c)}

5: for each m in RANK(Mvalid, SCORE) do
6: ν ← f(df,m)
7: if ν is valid then
8: V ← V ∪ {ν}
9: return V

10: function SCORE(f, df,m)
11: dforig ← ORIGDF(f); morig ← ORIGCOLS(f); score ← 0
12: for each p ∈ COLPARAMS(f) do
13: cm ← m[p]; corig ← morig[p]

. Column-types must match for the mapping to be valid
14: if COLTYPE(dforig, corig) 6= COLTYPE(df, cm) then
15: return 0
16: dorig ← DTYPES(dforig, corig); dm ← DTYPES(df, cm)
17: score ← score + (|dorig ∩ dm| / |dorig ∪ dm|)
18: if HASNULLS(dforig, corig) = HASNULLS(df, cm) then
19: score ← score + 1
20: return score

of implicitly participating columns of f which has the same
column-type and data-types. The rationale is that if a column
participates implicitly, the criteria determining its participating
is most often a function of the column and data types.

In the second phase (lines 5-9), the mappings are tried one-
by-one, highest-score first. All the unique valid (non-empty)
visualizations collected are returned at the end.

VII. EVALUATION

We focus on three main research questions (RQs) to evaluate
VIZSMITH. In RQ1, we analyze the diversity of the mined vi-
sualization functions. Specifically, we explore the distributions
over the size of the functions, the APIs explored, and whether
a function performs data pre-processing. RQ2 evaluates our
metamorphic testing approach to computing reusability against
a ground truth established via a manual study. Finally, in RQ3,
we evaluate end-to-end synthesis performance of VIZSMITH.

A. RQ1: How diverse is the collective functionality of all
visualization functions?

As it is infeasible to manually examine each function and
classify its functionality, we approximate it as the set of
API functions used in the body of the visualization function.
Note that we only consider functions classified as reusable

TABLE II: Competition Statistics. # notebooks is the number
of notebooks eligible for execution. X, ∅, >, × indicate that at
least one viz was mined, no visualizations mined, timeout and
error respectively. # viz. funcs is the number of visualization
functions mined with reusable count in brackets.

competition # viz. funcs
(passed quality assurance)

LANL-Earthquake-Prediction 90 (86)
covid19-global-forecasting-week-1 397 (212)
house-prices 3832 (2772)
mercari-price-suggestion-challenge 120 (67)
mercedes-benz-greener-manufacturing 95 (64)
otto-group-product-classification 68 (68)
santander-customer-satisfaction 39 (23)
santander-value-prediction-challenge 64 (47)
titanic 4745 (3604)
tmdb-box-office-prediction 290 (233)

total 9740 (7176)

TABLE III: Top-10 API functions in each category, and the
number of reusable viz. functions that use the API.

plotting transform computation styling

sns.heatmap (1064) pd.groupby (367) pd.corr (687) mpl.title (948)
sns.countplot (1019) pd.drop (316) pd.isnull (352) sns.set (882)
sns.distplot (827) pd.fillna (308) pd.mean (241) mpl.ylabel (707)
sns.barplot (629) pd.sort values (264) pd.sum (221) mpl.xlabel (565)
sns.boxplot (576) pd.dropna (235) pd.value counts (217) mpl.xticks (377)
sns.factorplot (370) pd.concat (72) pd.replace (126) sns.set style (344)
mpl.scatter (304) pd.reset index (63) pd.isna (80) mpl.set title (302)
sns.scatterplot (213) pd.pivot table (53) pd.median (67) mpl.legend (252)
mpl.hist (212) pd.get dummies (52) pd.nlargest (63) sns.add legend (207)
sns.catplot (180) pd.head (35) pd.count (61) mpl.set ylabel (176)

by VIZSMITH. We find that all mined functions collectively
exercise a total of 289 API functions across 12 third-party
libraries. We further bucket each API function manually into
four categories using simple criteria, namely (a) plotting if
it draws a visualization, (b) transformation if it involves re-
shaping or filtering operations such as transpose, groupby and
dropping null rows, (c) computation if it involves mathematical
operations such as correlation and skew and (d) styling if it
only modifies the look of a visualization or the text inside it.

We find that 100%, 27%, 38% and 80% of visualization
functions use APIs in categories (a), (b), (c) and (d) respec-
tively. The top-10 API functions in each category with respect
to the number of visualization functions using the API are
listed in Table III. Evidently, VIZSMITH’s database covers a
wide variety of plotting, styling and transformation operations.

B. RQ2: How accurate is our metamorphic testing approach?

Section V introduced the conceptual definition of reusability
of visualizations. We also proposed an approach using meta-
morphic testing where the metamorphic relation approximated
this concept of reusability. In this RQ we measure the accu-
racy, precision and recall of this metamorphic testing approach
with respect to a ground truth obtained via manual inspection
of the visualization functions using the conceptual definition.

We sampled 50 reusable and 50 non-reusable visualization
functions as judged by our metamorphic testing approach. We
then designed an interface that displays these 100 functions

TABLE IV: Characterization of misclassifications by our meta-
morphic testing approach. FP and FN stand for false positive
and false negative respectively

ID Category Num. Cases

A Arbitrary Filtering using Multiple Columns (FP) 3
B Undetected Over-Specialization (FP) 4
C Visualization Design Choices (Bucketing/Axis-Limits) (FN) 4
D Overaggressive Mutation (FN) 14
E Adequately General Filtering Criterion (FN) 4

one-by-one in a random order. Three of the authors labelled
each function as reusable or non-reusable as per Definition 4.
We computed the ground-truth label via majority vote. In par-
ticular, the authors try to assess the intent of the visualization,
the class of dataframes where a similar visualization would be
meaningful and whether the implementation would be able to
produce that visualization without any modifications.

We find the accuracy of the metamorphic approach to be
71%, with a precision of 73% and recall of 71%. There
were 7 false positives (ground-truth non-reusable, classified
reusable) and 22 false negatives. We categorized these cases
in Table IV. The category column summarizes the reason
for the misclassification of the metamorphic testing approach.
Examples of these categories are shown in Figure 10.

The 7 false positives occur because our mutation operators
are only applied on one column at a time (category A), or the
code performs overly specific transforms that are not triggered
by mutations (category B), and hence pass metamorphic test-
ing check. The majority of the false negatives occur because of
over-aggressive mutation (category D). The example in Figure
10 uses a log function that throws an error when our mutation
introduces negative values. In 4 cases, the design choice of
using bucketing or changing the axis limits led to the same
visualizations being produced despite the mutations (category
C). Finally, there were 4 cases in Category E where the
filtering was not arbitrary (all positive values), but was judged
to be the case by our approach. All categories except E can
be handled by a more sophisticated mutation scheme or finer-
grained operators. Category E would require a pre-defined
notion of what is an adequately general filtering criterion.

C. RQ3: Effectiveness of Synthesis Approach

Finally, we evaluate the end-to-end synthesis performance
of VIZSMITH. We reuse the Kaggle notebooks utilized for
mining to create benchmarks. For every visualization slice we
extracted in Section IV-C, we select a visualization function
and create a benchmark where the dataframe corresponds to
the original dataframe i.e. ORIGDF(f) and the columns to vi-
sualize are ORIGPARTICIPATINGCOLS(f). The natural language
query is set to the text document associated with f as described
in Section VI-A. We select the largest visualization function, in
terms of statements, whose statements all come from the same
cell in the parent notebook. The rationale is that this simulates
a real usage scenario for VIZSMITH as notebook cells often
correspond to a single semantic unit of work. We also only

def visualization(df, col1, col2):
import matplotlib.pyplot as plt
train_df = df.drop(
df[

(df[col1]>4e3) & (df[col2]<3e5)
].index

)
plt.scatter(train_df[col1],

train_df[col2])

def visualization(df, col1):
import seaborn as sns
df[col1]=df[col1].fillna("S")
df[col1]=df[col1].map({"S":0,"C":1,"Q":2})
sns.heatmap(df.corr(), annot=True)

def visualization(df, col1):
import matplotlib.pyplot as plt
df[col1].hist(bins=5, grid=False)
plt.xlabel(col1)

def visualization(df, col1, col2):
import numpy as np
import matplotlib.pyplot as plt
df[col1]=np.log(df[col1])
plt.scatter(df[col1],df[col2])

def visualization(df, col1):
import seaborn as sns
ms = df[df[col1] > 0]
sns.barplot(ms.index, ms[col1])

A B

C

D

E

Fig. 10: Examples of each category in Table IV.

consider reusable functions as benchmarks. This yields 3284
benchmarks in total.

For each benchmark, we create an instantiation of VIZ-
SMITH using only visualization functions mined from com-
petitions other than the one corresponding to the benchmark
(leave-one-out cross-project). We then run VIZSMITH as well
as a baseline version of VIZSMITH called VIZSMITHALL

that searches over all visualization functions, including non-
reusable functions on each benchmark till they generate 10
visualizations or timeout after 60 seconds, whichever is earlier.

We find that both VIZSMITH and VIZSMITHALL have a top-
10 accuracy of 5%. That is, both have an exactly matching
visualization in the top-10 for only 5% of the cases. There are
two possible reasons for this low performance: (a) the quality
of the natural language query is poor and (b) styling variations
such as color schemes, rotation of tick labels and legend
positions will fail the matching visualization test. In a separate
manual study of a sample of 100 visualization functions with
associated natural language comments, we found only 17%
to actually describe the kind of plot and the columns being
visualized. Thus (a) is a distinct possibility. To mitigate the
effects of (b), we sample 50 benchmarks and examine the
results of both the tools manually. In particular, we ignore
stylistic variations such as color schemes, rotations of tick
labels, legend positions etc. while comparing the visualizations
with the ground truth. The top-10 accuracy in this case is
56% and 46% for VIZSMITH and VIZSMITHALL respectively.
Although the numbers are close, the difference lies in the
number of functions explored. VIZSMITH explores 50% less
visualization functions than VIZSMITHALL while still getting
slightly better accuracy as it only searches over reusable
functions which we hypothesized to be more useful during
synthesis than their non-reusable counterparts. Hence, we
demonstrate the utility of reusability analysis to improve end-
to-end synthesis performance.

VIII. LIMITATIONS AND THREATS TO VALIDITY

A. Real-World Usage
We have not performed an explicit user study to gauge the

performance of users using VIZSMITH on real-world visual-
ization authoring tasks. Hence, the results in Section VII-C
may not apply to real use cases. Note that performing such
a study would require careful experimental design to decou-
ple the techniques behind VIZSMITH from the quality of

the mined code as well as the associated natural language
comments, which are often imprecise or even irrelevant. To
enable external assessment, we have released a fully func-
tioning prototype of VIZSMITH along with a simple UI at
https://github.com/rbavishi/vizsmith-demo.

B. Code Licensing and Security

VIZSMITH’s database is populated using code written by
data scientists and machine learning practitioners that is
publicly available on the Internet. As such, code snippets
returned by VIZSMITH may not be appropriate for use in
certain contexts due to the license of the parent notebook
containing the code snippet. This can be mitigated by passing
an appropriately vetted corpus to VIZSMITH. Security may
also be a concern since VIZSMITH executes every function in
its database as part of its metamorphic testing phase. We could
mitigate this by adding extra checks to filter out functions
with excessive resource consumption, unauthorized file system
access, or network requests.

C. Construct Validity

All three research questions involve manual analysis and
thus have a subjective component. For RQ1, we classified the
functions manually. To reduce the effect of subjectivity, we
provided simple and easily reproducible criteria for arriving
at this classification. For RQ3, we analyzed the generated
visualizations manually because it is hard to automatically
identify stylistic variations in a reliable manner. We precisely
listed down the classes of stylistic variations that we ignore
while comparing two visualizations. Judging reusability as per
Def. 4 involves manual inspection of the code, the data, and the
visualization. Thus, RQ2 has a higher risk of imprecision than
RQ1 and RQ3. We mitigated this by having three reviewers
independently judge reusability and taking the majority vote.
We also assessed the misclassifications qualitatively, and came
up with general characterizations of the failure cases.

IX. RELATED WORK

We compare VIZSMITH against existing visualization au-
thoring systems along the dimensions of intended usage, the
use of code templates, the kind of specifications used and the
aspect of learning from data. We also compare and contrast
applications of code mining and reuse in other domains.

https://github.com/rbavishi/vizsmith-demo

A. Visualization Authoring Systems
1) Exploratory Data Analysis: To facilitate data explo-

ration, systems such as Voyager [29] and Draco [30] ac-
cept partial visual specifications containing the columns to
visualize as well as wildcards to generate a collection of
visualizations capturing different views of the data in a target
grammar such as Vega-Lite [31]. These visualizations are fil-
tered and ranked based on either manually designed heuristics
[29], [32] or using constraint solving [30]. These heuristics
ensure conformance to best visualization design practices.
These systems are very useful for quickly exploring data and
gathering insights while VIZSMITH is mostly intended for
searching for a specific visualization. Nevertheless, VIZSMITH
can also benefit from incorporating the design heuristics to
better rank its output visualizations.

2) Reusable Visualization Templates: Ivy [33] allows users
to build a specific visualization by choosing from a cata-
logue of visualization templates, which are similar in spirit
to the reusable functions mined by VIZSMITH. However
these templates are manually derived while VIZSMITH uses
a combination of program analysis and metamorphic testing
to collect its reusable functions.

3) Visualization Specifications: Similar to VIZSMITH, a
number of visualization authoring systems accepting natural-
language specifications from the user have been developed
[34]–[36]. These systems use a carefully designed grammar
or automaton to parse natural language queries describing
the desired visualization and keep track of the interaction
context. This grants users fine-grained control over the pro-
duced visualization. However the use of such a fixed grammar
limits the space of visualizations that can be generated. Due
to its use of mining, VIZSMITH can target different kinds
of visualizations such as word-clouds, visualizations using
different APIs and richer data transformation code such as
computing correlations and cross-tabulations on top of the
sorting, filtering and aggregation functionalities offered by
the above systems. Finally, although this work only explores
a simple keyword-based search to match snippets with user
queries, recent advances in natural-language processing (NLP)
[37], [38] could be leveraged to improve the search.

Richer modes of specification have also been explored.
Falx [17], [18] allows users to provide pieces of the target
visualization and the system utilizes program synthesis to gen-
erate the required data transformation and visualization code.
This form of specification captures a lot more information
about the desired visualization and thus Falx can complement
VIZSMITH in cases where a very specific visualization is
desired and cannot be described accurately with keywords.

4) Learning from Data: Data2Vis [39] trains deep learning
models on pairs of dataset and visualization specifications
obtained from the Vega-Lite corpus [40] and recommends
visualizations given a dataset at inference time. However, it
does not grant control over the columns or fields that are
visualized which would force the user to pick out the desired
visualization from a large set. PlotCoder [41] is the closest
to VIZSMITH in that it generates visualization code from

natural language that contains information about columns to
visualize. However it restricts the set of visualizations to a
subset of matplotlib, and cannot generate transformation code
like VIZSMITH.

B. Code Mining and Reuse

Code mining and reuse has been employed in a number of
other applications. The EG system [42] uses static analysis
across large code-bases to build a database of usage examples
for APIs which can be queried. However the examples are not
always executable and thus their output cannot be shown on
the user’s input. For visualization synthesis, it is essential for
the user to see the output visualization on their data to select
the one that meets their needs, thus such an approach would
not work in our problem setting.

AutoType [43] and TDE [44] synthesize executable pro-
grams using mined code corpora for type-validation and string
transformation respectively. Phoenix [45] and Getafix [46]
induce repair patterns from mined static analysis repairs. All
these domains offer precise specifications—positive and nega-
tive examples for a type, input/output pairs for transformations
and a pass/fail from the static analyzer. This greatly simplifies
the filtering of bad mined code as one can simply check them
against the specification. In VIZSMITH’s setting, the lack of
such a precise target necessitates the use of techniques such as
metamorphic testing to weed out bad visualization functions.

Aroma [47] takes a different approach to reusability. It
accepts a partial code snippet as input and performs code
completion by searching over a large indexed code corpus and
intersecting the search results. This intersection step ensures
the completed code only contains elements that are common
across a sufficiently diverse set of snippets and thus reusable.

X. CONCLUSION

We presented VIZSMITH, a tool which accepts a dataset,
columns to visualize and a text query from the user and synthe-
sizes visualization code. First, in an offline phase VIZSMITH
mines Kaggle notebooks to create a database of 7176 reusable
Python functions. It uses a novel metamorphic testing ap-
proach to automatically assess reusability of functions. When
presented with the user query, VIZSMITH efficiently searches
this database to find relevant functions, execute them and
return the generated visualizations. We evaluated VIZSMITH
and found that it can suggest the right visualization for 56% of
the benchmarks. We also found that using reusability analysis
helps improve the quality of visualizations and reduces the
search space by 50%. VIZSMITH is available publicly at
https://github.com/rbavishi/vizsmith-demo.

XI. ACKNOWLEDGEMENTS

We thank Caroline Lemieux, Karan Bavishi, and all our
anonymous reviewers for their invaluable feedback on this
paper. This research is supported in part by a grant from
Fujitsu Research of America, and NSF grants CCF-1900968,
CCF-1908870, and CNS-1817122.

https://github.com/rbavishi/vizsmith-demo

REFERENCES

[1] E. Segel and J. Heer, “Narrative Visualization: Telling Stories with
Data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, p. 1139–1148, Nov. 2010. [Online]. Available:
https://doi.org/10.1109/TVCG.2010.179

[2] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data
analysis and visualization: An interview study,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2917–2926,
2012.

[3] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. D. Team, “Jupyter Notebooks
- a publishing format for reproducible computational workflows,” in
ELPUB, 2016.

[4] H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York, 2016. [Online]. Available: https://ggplot2.tidyverse.
org

[5] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[6] M. Gharehyazie, B. Ray, and V. Filkov, “Some from Here, Some
from There: Cross-Project Code Reuse in GitHub,” in Proceedings of
the 14th International Conference on Mining Software Repositories,
ser. MSR ’17. IEEE Press, 2017, p. 291–301. [Online]. Available:
https://doi.org/10.1109/MSR.2017.15

[7] C. Sadowski, K. T. Stolee, and S. Elbaum, “How Developers Search
for Code: A Case Study,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: Association for Computing Machinery, 2015, p.
191–201. [Online]. Available: https://doi.org/10.1145/2786805.2786855

[8] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How Do Developers
Utilize Source Code from Stack Overflow?” Empirical Softw.
Engg., vol. 24, no. 2, p. 637–673, Apr. 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9634-5

[9] Y. Wang, Y. Feng, R. Martins, A. Kaushik, I. Dillig, and S. P. Reiss,
“Hunter: Next-Generation Code Reuse for Java,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1028–1032. [Online].
Available: https://doi.org/10.1145/2950290.2983934

[10] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An Infrastructure
for Large-Scale Collection and Analysis of Open-Source Code,” Sci.
Comput. Program., vol. 79, p. 241–259, Jan. 2014. [Online]. Available:
https://doi.org/10.1016/j.scico.2012.04.008

[11] S. P. Reiss, “Semantics-Based Code Search,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE
’09. New York, NY, USA: Association for Computing Machinery,
2009, p. 243–253. [Online]. Available: https://doi.org/10.1109/ICSE.
2009.5070525

[12] S. Wang, D. Lo, and L. Jiang, “Active Code Search: Incorporating
User Feedback to Improve Code Search Relevance,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 677–682. [Online]. Available:
https://doi.org/10.1145/2642937.2642947

[13] R. Cottrell, R. J. Walker, and J. Denzinger, “Semi-Automating
Small-Scale Source Code Reuse via Structural Correspondence,” in
Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’08/FSE-16.
New York, NY, USA: Association for Computing Machinery, 2008, p.
214–225. [Online]. Available: https://doi.org/10.1145/1453101.1453130

[14] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing,
“What Do Developers Search for on the Web?” Empirical Softw.
Engg., vol. 22, no. 6, p. 3149–3185, Dec. 2017. [Online]. Available:
https://doi.org/10.1007/s10664-017-9514-4

[15] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval
on source code: a neural code search,” in ACM SIGPLAN Workshop on
Machine Learning and Programming Languages (MAPL’18), 2018.

[16] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When
deep learning met code search,” in Industry Track of 27th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’19). ACM, 2019,
pp. 964–974.

[17] C. Wang, Y. Feng, R. Bodik, I. Dillig, A. Cheung, and A. J. Ko,
“Falx: Synthesis-Powered Visualization Authoring,” arXiv e-prints, p.
arXiv:2102.01024, Feb. 2021.

[18] C. Wang, Y. Feng, R. Bodik, A. Cheung, and I. Dillig, “Visualization
by Example,” Proc. ACM Program. Lang., vol. 4, no. POPL, Dec.
2019. [Online]. Available: https://doi.org/10.1145/3371117

[19] “The kaggle data-science platform.” [Online]. Available: https:
//www.kaggle.com/

[20] “Voice call quality customer experience.” [Online]. Available: https:
//data.gov.in/catalog/voice-call-quality-customer-experience

[21] “Stacked bar chart.” [Online]. Available: https://matplotlib.org/stable/
gallery/lines bars and markers/bar stacked.html

[22] “How can i normalize data and create a stacked bar chart?”
[Online]. Available: https://stackoverflow.com/questions/57337796/
how-can-i-normalize-data-and-create-a-stacked-bar-chart

[23] H. Agrawal and J. R. Horgan, “Dynamic Program Slicing,” SIGPLAN
Not., vol. 25, no. 6, p. 246–256, Jun. 1990. [Online]. Available:
https://doi.org/10.1145/93548.93576

[24] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, p. 183–200,
Feb. 2002. [Online]. Available: https://doi.org/10.1109/32.988498

[25] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-
Guided Program Reduction,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 361–371.
[Online]. Available: https://doi.org/10.1145/3180155.3180236

[26] E. Weyuker, “On Testing Non-Testable Programs,” Computer Journal,
vol. 25, 11 1982.

[27] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a
new approach for generating next test cases,” Technical Report HKUST-
CS98-01,, 1998.

[28] G. Amati, BM25. Boston, MA: Springer US, 2009, pp. 257–260.
[Online]. Available: https://doi.org/10.1007/978-0-387-39940-9 921

[29] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer, “Voyager: Exploratory Analysis via Faceted Browsing
of Visualization Recommendations,” IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2016. [Online]. Available: http:
//idl.cs.washington.edu/papers/voyager

[30] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer, “Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco,” IEEE Transactions on
Visualization and Computer Graphics, vol. 25, no. 1, p. 438–448, Jan.
2019. [Online]. Available: https://doi.org/10.1109/TVCG.2018.2865240

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-Lite: A Grammar of Interactive Graphics,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, p. 341–350, Jan.
2017. [Online]. Available: https://doi.org/10.1109/TVCG.2016.2599030

[32] J. Mackinlay, “Automating the Design of Graphical Presentations of
Relational Information,” ACM Trans. Graph., vol. 5, no. 2, p. 110–141,
Apr. 1986. [Online]. Available: https://doi.org/10.1145/22949.22950

[33] A. McNutt and R. Chugh, “Integrated Visualization Editing via Parame-
terized Declarative Templates,” arXiv e-prints, p. arXiv:2101.07902, Jan.
2021.

[34] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. Karahalios,
“Datatone: Managing ambiguity in natural language interfaces
for data visualization,” Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology
- UIST ’15, pp. 489–500, 2015. [Online]. Available:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800{&}
partnerID=40{&}md5=f0eb3ceb834a66e6d0eb6b59ffc57163

[35] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X.
Chang, “Eviza: A Natural Language Interface for Visual Analysis,”
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology - UIST ’16, pp. 365–377, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2984511.2984588

[36] E. Hoque, V. Setlur, M. Tory, and I. Dykeman, “Applying Pragmatics
Principles for Interaction with Visual Analytics,” IEEE Transactions on
Visualization and Computer Graphics, no. c, 2017. [Online]. Available:
dx.doi.org/10.1109/TVCG.2017.2744684

[37] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,

https://doi.org/10.1109/TVCG.2010.179
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://doi.org/10.1109/MSR.2017.15
https://doi.org/10.1145/2786805.2786855
https://doi.org/10.1007/s10664-018-9634-5
https://doi.org/10.1145/2950290.2983934
https://doi.org/10.1016/j.scico.2012.04.008
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1109/ICSE.2009.5070525
https://doi.org/10.1145/2642937.2642947
https://doi.org/10.1145/1453101.1453130
https://doi.org/10.1007/s10664-017-9514-4
https://doi.org/10.1145/3371117
https://www.kaggle.com/
https://www.kaggle.com/
https://data.gov.in/catalog/voice-call-quality-customer-experience
https://data.gov.in/catalog/voice-call-quality-customer-experience
https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_stacked.html
https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_stacked.html
https://stackoverflow.com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-bar-chart
https://stackoverflow.com/questions/57337796/how-can-i-normalize-data-and-create-a-stacked-bar-chart
https://doi.org/10.1145/93548.93576
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1007/978-0-387-39940-9_921
http://idl.cs.washington.edu/papers/voyager
http://idl.cs.washington.edu/papers/voyager
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/22949.22950
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800{&}partnerID=40{&}md5=f0eb3ceb834a66e6d0eb6b59ffc57163
http://www.scopus.com/inward/record.url?eid=2-s2.0-84958249800{&}partnerID=40{&}md5=f0eb3ceb834a66e6d0eb6b59ffc57163
http://doi.acm.org/10.1145/2984511.2984588
dx.doi.org/10.1109/TVCG.2017.2744684

Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[38] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[39] V. Dibia and Ç. Demiralp, “Data2Vis: Automatic Generation of Data Vi-
sualizations Using Sequence to Sequence Recurrent Neural Networks,”
arXiv e-prints, p. arXiv:1804.03126, Apr. 2018.

[40] J. Poco and J. Heer, “Reverse-engineering visualizations: Recovering
visual encodings from chart images,” Computer Graphics Forum,
vol. 36, no. 3, pp. 353–363, 2017. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13193

[41] X. Chen, L. Gong, A. Cheung, and D. Song, “Plotcoder: Hierarchical
decoding for synthesizing visualization code in programmatic context,”
in Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, C. Zong, F. Xia, W. Li, and
R. Navigli, Eds. Association for Computational Linguistics, 2021,
pp. 2169–2181. [Online]. Available: https://doi.org/10.18653/v1/2021.
acl-long.169

[42] C. Barnaby, K. Sen, T. Zhang, E. Glassman, and S. Chandra, “Exempla
Gratis (E.G.): Code Examples for Free,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1353–1364. [Online]. Available:
https://doi.org/10.1145/3368089.3417052

[43] C. Yan and Y. He, “Synthesizing Type-Detection Logic for Rich
Semantic Data Types Using Open-Source Code,” in Proceedings of the
2018 International Conference on Management of Data, ser. SIGMOD
’18. New York, NY, USA: Association for Computing Machinery, 2018,
p. 35–50. [Online]. Available: https://doi.org/10.1145/3183713.3196888

[44] Y. He, K. Ganjam, K. Lee, Y. Wang, V. Narasayya, S. Chaudhuri,
X. Chu, and Y. Zheng, “Transform-Data-by-Example (TDE): Extensible
Data Transformation in Excel,” in Proceedings of the 2018 International
Conference on Management of Data, ser. SIGMOD ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1785–1788.
[Online]. Available: https://doi.org/10.1145/3183713.3193539

[45] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated
data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 613–624. [Online].
Available: https://doi.org/10.1145/3338906.3338952

[46] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to fix
bugs automatically,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
Oct. 2019. [Online]. Available: https://doi.org/10.1145/3360585

[47] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma:
Code recommendation via structural code search,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360578

https://aclanthology.org/N19-1423
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13193
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13193
https://doi.org/10.18653/v1/2021.acl-long.169
https://doi.org/10.18653/v1/2021.acl-long.169
https://doi.org/10.1145/3368089.3417052
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3193539
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3360578

	Introduction
	Motivating Example
	Overview of VizSmith
	Mining
	Collecting and Replaying Notebooks
	Instrumentation and Execution
	Visualization Objects and Visualization Slices
	Minimizing Visualization Slices
	Extracting Visualization Functions
	Participating Columns vs. Column Parameters

	Analysis of Mined Visualization Functions
	Defining Reusability
	Metamorphic Testing for Checking Reusability

	Visualization Synthesis
	Search
	Generating Visualizations

	Evaluation
	RQ1: How diverse is the collective functionality of all visualization functions?
	RQ2: How accurate is our metamorphic testing approach?
	RQ3: Effectiveness of Synthesis Approach

	Limitations and Threats to Validity
	Real-World Usage
	Code Licensing and Security
	Construct Validity

	Related Work
	Visualization Authoring Systems
	Exploratory Data Analysis
	Reusable Visualization Templates
	Visualization Specifications
	Learning from Data

	Code Mining and Reuse

	Conclusion
	Acknowledgements
	References

